DOI QR코드

DOI QR Code

A novel multi-feature model predictive control framework for seismically excited high-rise buildings

  • 투고 : 2022.03.23
  • 심사 : 2022.06.11
  • 발행 : 2022.08.25

초록

In this paper, a novel multi-feature model predictive control (MPC) framework with real-time and adaptive performances is proposed for intelligent structural control in which some drawbacks of the algorithm including, complex control rule and non-optimality, are alleviated. Hence, Linear Programming (LP) is utilized to simplify the resulted control rule. Afterward, the Whale Optimization Algorithm (WOA) is applied to the optimal and adaptive tuning of the LP weights independently at each time step. The stochastic control rule is also achieved using Kalman Filter (KF) to handle noisy measurements. The Extreme Learning Machine (ELM) is then adopted to develop a data-driven and real-time control algorithm. The efficiency of the developed algorithm is then demonstrated by numerical simulation of a twenty-story high-rise benchmark building subjected to earthquake excitations. The competency of the proposed method is proven from the aspects of optimality, stochasticity, and adaptivity compared to the KF-based MPC (KMPC) and constrained MPC (CMPC) algorithms in vibration suppression of building structures. The average value for performance indices in the near-field and far-field (El earthquakes demonstrates a reduction up to 38.3% and 32.5% compared with KMPC and CMPC, respectively.

키워드

참고문헌

  1. Afram, A., Janabi-Sharifi, F., Fung, A.S. and Raahemifar, K. (2017), "Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system", Energy Build., 141, 96-113. https://doi.org/10.1016/j.enbuild.2017.02.012.
  2. Blachowski, B. and Pnevmatikos, N. (2018), "Neural network based vibration control of seismically excited civil structures", Periodica Polytechnica Civil Eng., 62(3), 620-628. https://doi.org/10.3311/PPci.11601.
  3. Caicedo, D., Lara-Valencia, L., Blandon, J. and Graciano, C. (2021), "Seismic response of high-rise buildings through metaheuristic-based optimization using tuned mass dampers and tuned mass dampers inerter", J. Build. Eng., 34, 101927. https://doi.org/10.1016/j.jobe.2020.101927.
  4. Chen, Y., Zhang, S., Peng, H., Chen, B. and Zhang, H. (2017), "A novel fast model predictive control for large-scale structures", J. Vib. Control, 23(13), 2190-2205. https://doi.org/10.1177%2F1077546315610033. https://doi.org/10.1177%2F1077546315610033
  5. Chen, Z.Y., Wang, R.Y., Meng, Y., Fu, Q. and Chen, T. (2021), "Smart structural control and analysis for earthquake excited building with evolutionary design", Struct. Eng. Mech., 79(2), 131-139. https://doi.org/10.12989/sem.2021.79.2.131.
  6. Dantzig, G.B. and Thapa, M.N. (2006), Linear Programming 1: Introduction, Springer Science & Business Media.
  7. Di Girolamo, G.D., Smarra, F., Gattulli, V., Potenza, F., Graziosi, F. and D'Innocenzo, A. (2020), "Data-driven optimal predictive control of seismic induced vibrations in frame structures", Struct. Control Hlth. Monit., 27(4), e2514. https://doi.org/10.1002/stc.2514.
  8. Dutta, L. and Das, D.K. (2020), "An ensemble kalman filter based explicit nonlinear model predictive control design for two degree freedom of helicopter model", 2020 International Conference on Computational Performance Evaluation (ComPE), July.
  9. Essien, E., Ibrahim, H., Mehrandezh, M. and Idem, R. (2019), "Adaptive neuro-fuzzy inference system (ANFIS)-based model predictive control (MPC) for carbon dioxide reforming of methane (CDRM) in a plug flow tubular reactor for hydrogen production", Ther. Sci. Eng. Prog., 9, 148-161. https://doi.org/10.1016/j.tsep.2018.11.010.
  10. Farina, M., Giulioni, L. and Scattolini, R. (2016), "Stochastic linear model predictive control with chance constraints-A review", J. Proc. Control, 44, 53-67. https://doi.org/10.1016/j.jprocont.2016.03.005.
  11. Gallego, A.J., Sanchez, A.J., Berenguel, M. and Camacho, E.F. (2020), "Adaptive UKF-based model predictive control of a Fresnel collector field", J. Proc. Control, 85, 76-90. https://doi.org/10.1016/j.jprocont.2019.09.003.
  12. Heirung, T.A.N., Paulson, J.A., O'Leary, J. and Mesbah, A. (2018), "Stochastic model predictive control-how does it work?", Comput. Chem. Eng., 114, 158-170. https://doi.org/10.1016/j.compchemeng.2017.10.026.
  13. Hewing, L. and Zeilinger, M.N. (2018), "Stochastic model predictive control for linear systems using probabilistic reachable sets", 2018 IEEE Conference on Decision and Control (CDC), December.
  14. Huang, G.B., Zhu, Q.Y. and Siew, C.K. (2004), "Extreme learning machine: a new learning scheme of feedforward neural networks", 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), 2, 985-990.
  15. Janakiraman, V.M., Nguyen, X. and Assanis, D. (2016), "An ELM based predictive control method for HCCI engines", Eng. Appl. Artif. Intel., 48, 106-118. https://doi.org/10.1016/j.engappai.2015.10.007.
  16. Kalita, K., Ghadai, R.K. and Chakraborty, S. (2021), "A comparative study on the metaheuristic-based optimization of skew composite laminates", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01401-y.
  17. Katebi, J. and Zadeh, S.M. (2016), "Time delay study for semiactive control of coupled adjacent structures using MR damper", Struct. Eng. Mech., 58(6), 1127-1143. https://doi.org/10.12989/sem.2016.58.6.1127.
  18. Katebi, J. and Zamen, S. (2018), "Robust time varying sliding sector for uncertain structures control", J. Vib. Control, 24(1), 171-190. https://doi.org/10.1177%2F1077546316636540. https://doi.org/10.1177%2F1077546316636540
  19. Kayabekir, A.E., Nigdeli, S.M. and Bekdas, G. (2020), "Robustness of structures with active tuned mass dampers optimized via modified harmony search for time delay", International Conference on Harmony Search Algorithm, Springer, Singapore, April.
  20. Khodabandehlou, H., Pekcan, G., Fadali, M.S. and Salem, M.M. (2018), "Active neural predictive control of seismically isolated structures", Struct. Control Hlth. Monit., 25(1), e2061. https://doi.org/10.1002/stc.2061.
  21. Lara-Valencia, L.A., Caicedo, D. and Valencia-Gonzalez, Y. (2021), "A novel whale optimization algorithm for the design of tuned mass dampers under earthquake excitations", Appl. Sci., 11(13), 6172. https://doi.org/10.3390/app11136172.
  22. Lee, J.H. (2014), "From robust model predictive control to stochastic optimal control and approximate dynamic programming: A perspective gained from a personal journey", Comput. Chem. Eng., 70, 114-121. https://doi.org/10.1016/j.compchemeng.2013.10.014.
  23. Liu, M., Chen, W., Huang, J. and Ning, Y. (2020), "Kalman filterbased model predictive control for an adaptive cruise control system considering measurement noise", SAE Int. J. Connect. Autom. Vehicl., 3(12-03-01-0005), 53-66. https://doi.org/10.4271/12-03-01-0005.
  24. Luo, J., Jin, K., Wang, M., Yuan, J. and Li, G. (2017), "Robust entry guidance using linear covariance-based model predictive control", Int. J. Adv. Robot. Syst., 14(1), 1729881416687503. https://doi.org/10.1177%2F1729881416687503. https://doi.org/10.1177%2F1729881416687503
  25. Mayne, D. (2016), "Robust and stochastic model predictive control: Are we going in the right direction?", Ann. Rev. Control, 41, 184-192. https://doi.org/10.1016/j.arcontrol.2016.04.006.
  26. Mei, G., Kareem, A. and Kantor, J.C. (2004), "Model predictive control of wind-excited building: Benchmark study", J. Eng. Mech., 130(4), 459-465. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(459).
  27. Mesbah, A. (2016), "Stochastic model predictive control: An overview and perspectives for future research", IEEE Control Syst. Mag., 36(6), 30-44. https://doi.org/10.1109/MCS.2016.2602087.
  28. Mirjalili, S. and Lewis, A. (2016), "The whale optimization algorithm", Adv. Eng. Softw., 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008.
  29. Ning, X., Wang, Z., Wang, C. and Wu, B. (2020), "Adaptive feedforward and feedback compensation method for real-time hybrid simulation based on a discrete physical testing system model", J. Earthq. Eng., 1-23. https://doi.org/10.1080/13632469.2020.1823912.
  30. Ohtori, Y., Christenson, R.E., Spencer Jr., B.F. and Dyke, S.J. (2004), "Benchmark control problems for seismically excited nonlinear buildings", J. Eng. Mech., 130(4), 366-385. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(366).
  31. Oveisi, A., Hosseini-Pishrobat, M., Nestorovic, T. and Keighobadi, J. (2018), "Observer-based repetitive model predictive control in active vibration suppression", Struct. Control Hlth. Monit., 25(5), e2149. https://doi.org/10.1002/stc.2149.
  32. Patan, K. (2018), "Two stage neural network modelling for robust model predictive control", ISA Transac., 72, 56-65. https://doi.org/10.1016/j.isatra.2017.10.011.
  33. Pedersen, S. and Ulriksen, M.D. (2021), "Closed-loop experimental testing framework for structural control applications", Struct. Control Hlth. Monit., 28(8), e2765. https://doi.org/10.1002/stc.2765.
  34. Peng, H., Chen, Y., Li, E., Zhang, S. and Chen, B. (2018), "Explicit expression-based practical model predictive control implementation for large-scale structures with multi-input delays", J. Vib. Control, 24(12), 2605-2620. https://doi.org/10.1177%2F1077546316689341. https://doi.org/10.1177%2F1077546316689341
  35. Peng, H., Li, F., Zhang, S. and Chen, B. (2017), "A novel fast model predictive control with actuator saturation for large-scale structures", Comput. Struct., 187, 35-49. https://doi.org/10.1016/j.compstruc.2017.03.014.
  36. Pnevmatikos, N. (2017), "Pole placement algorithm for control of civil structures subjected to earthquake excitation", J. Appl. Comput. Mech., 3(1), 25-36. https://doi.org/10.22055/jacm.2017.12603.
  37. Rad, A.B., Nouri, M., Katebi, J. and Ghasemi, S.A.M. (2021), "A developed model predictive control scheme for vibration attenuation of building structures", Smart Struct. Syst., 27(4), 691-703. https://doi.org/10.12989/sss.2021.27.4.691.
  38. Rahmani, H.R., Chase, G., Wiering, M. and Konke, C. (2019), "A framework for brain learning-based control of smart structures", Adv. Eng. Inform., 42, 100986. https://doi.org/10.1016/j.aei.2019.100986.
  39. Rayegani, A. and Nouri, G. (2020), "Application of smart dampers for prevention of seismic pounding in isolated structures subjected to near-fault earthquakes", J. Earthq. Eng., 1-16. https://doi.org/10.1080/13632469.2020.1822230.
  40. Seron, M.M., Goodwin, G.C. and Carrasco, D.S. (2019), "Stochastic model predictive control: Insights and performance comparisons for linear systems", Int. J. Robust Nonlin. Control, 29(15), 5038-5057. https://doi.org/10.1002/rnc.4106.
  41. Sferrazza, C., Muehlebach, M. and D'Andrea, R. (2020), "Learning-based parametrized model predictive control for trajectory tracking", Optim. Control Appl. Meth., 41(6), 2225-2249. https://doi.org/10.1002/oca.2656.
  42. Si, B., Wang, J., Yao, X., Shi, X., Jin, X. and Zhou, X. (2019), "Multi-objective optimization design of a complex building based on an artificial neural network and performance evaluation of algorithms", Adv. Eng. Inform., 40, 93-109. https://doi.org/10.1016/j.aei.2019.03.006.
  43. Simon, D. (2006), Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. John Wiley & Sons.
  44. Smarra, F., Jain, A., De Rubeis, T., Ambrosini, D., D'Innocenzo, A. and Mangharam, R. (2018), "Data-driven model predictive control using random forests for building energy optimization and climate control", Appl. Energy, 226, 1252-1272. https://doi.org/10.1016/j.apenergy.2018.02.126.
  45. Song, Y., Fang, X. and Diao, Q. (2016), "Mixed H2/H distributed robust model predictive control for polytopic uncertain systems subject to actuator saturation and missing measurements", Int. J. Syst. Sci., 47(4), 777-790. https://doi.org/10.1080/00207721.2014.905647.
  46. Ulusoy, S., Bekdas, G., Nigdeli, S.M., Kim, S. and Geem, Z.W. (2021), "Performance of optimum tuned PID controller with different feedback strategies on active-controlled structures", Appl. Sci., 11(4), 1682. https://doi.org/10.3390/app11041682.
  47. Ulusoy, S., Nigdeli, S.M. and Bekdas, G. (2021), "Novel metaheuristic-based tuning of PID controllers for seismic structures and verification of robustness", J. Build. Eng., 33, 101647. https://doi.org/10.1016/j.jobe.2020.101647.
  48. Wang, L. (2009), Model Predictive Control System Design and Implementation using MATLAB®, Springer Science & Business Media.
  49. Yang, C.S.W., Chung, L.L., Wu, L.Y. and Chung, N.H. (2011), "Modified predictive control of structures with direct output feedback", Struct. Control Hlth. Monit., 18(8), 922-940. https://doi.org/10.1002/stc.411.
  50. Zhao, J., Zhao, Y., Ruan, X., Gong, X. and Zhang, X. (2021), "Experimental research on the seismic properties of shear wall reinforced with high-strength bars and magnetorheological dampers", Struct. Control Hlth. Monit., 28(9), e2779. https://doi.org/10.1002/stc.2779.