DOI QR코드

DOI QR Code

Flexural response of steel beams strengthened by fibre-reinforced plastic plate and fire retardant coating at elevated temperatures

  • Ahmed, Alim Al Ayub (Jiujiang University) ;
  • Kharnoob, Majid M. (Civil Engineering Department, University of Baghdad) ;
  • Akhmadeev, Ravil (Plekhanov Russian University of Economics, Russian Federation) ;
  • Sevbitov, Andrei (Department of Propaedeutics of Dental Diseases, Sechenov First Moscow State Medical University) ;
  • Jalil, Abduladheem Turki (Medical Laboratories Techniques Department, Al-Mustaqbal University College) ;
  • Kadhim, Mustafa M. (Medical Laboratory Techniques Department, Al-Farahidi University) ;
  • Hansh, Zahra J. (College of Petroleum Engineering, Al-Ayen University) ;
  • Mustafa, Yasser Fakri (Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul) ;
  • Akhmadullina, Irina (Kazan Federal University)
  • Received : 2021.11.06
  • Accepted : 2022.07.04
  • Published : 2022.08.25

Abstract

In this paper, the effect of fire conditions according to ISO 834 standard on the behavior of carbon fibre-reinforced plastic (CFRP) reinforced steel beams coated with gypsum-based mortar has been investigated numerically. To study the efficiency of these beams, 3D coupled temperature-displacement finite element analyzes have been conducted. Mechanical and thermal characteristics of three different parts of composite beams, i.e., steel, CFRP plate, and fireproof coating, were considered as a function of temperature. The interaction between steel and CFRP plate has been simulated employing the adhesion model. The effect of temperature, CFRP plate reinforcement, and the fireproof coating thickness on the deformation of the beams have been analyzed. The results showed that within the first 120 min of fire exposure, increasing the thickness of the fireproof coating from 1 mm to 10 mm reduced the maximum temperature of the outer surface of the steel beam from 380℃ to 270℃. This increase in the thickness of the fireproof layer decreased the rate of growth in the temperature of the steel beam by approximately 30%. Besides excellent thermal resistance and gypsum-based mortar, the studied fireproof coating method could provide better fire resistance for steel structures and thus can be applied to building materials.

Keywords

References

  1. Ahn, J.K., Lee, C.H. and Park, H.N. (2013), "Prediction of fire resistance of steel beams with considering structural and thermal parameters", Fire Saf. J., 56, 65-73. https://doi.org/10.1016/j.firesaf.2013.01.002.
  2. Alam, N., Nadjai, A., Ali, F. and Nadjai, W. (2018), "Structural response of unprotected and protected slim floors in fire", J. Constr. Steel Res., 142, 44-54. https://doi.org/10.1016/j.jcsr.2017.12.009.
  3. Amran, M., Huang, S.S., Debbarma, S. and Rashid, R.S. (2022), "Fire resistance of geopolymer concrete: A critical review", Constr. Build. Mater., 324, 126722. https://doi.org/10.1016/j.conbuildmat.2022.126722.
  4. Arrais, F., Lopes, N. and Real, P.V. (2021), "Fire behaviour and resistance of cold-formed steel beams with sigma crosssections", J. Struct. Fire Eng., 9, 34-47. https://doi.org/10.1108/JSFE-11-2020-0037.
  5. Bisby, L.A., Green, M.F. and Kodur, V.K. (2005), "Response to fire of concrete structures that incorporate FRP", Prog. Struct. Eng. Mater., 7(3), 136-149. https://doi.org/10.1002/pse.198.
  6. Cai, Z., Yu, J., Tian, L., Liu, F. and Yu, K. (2021), "Fire resistance of post-earthquake steel beams insulated with a novel fireresistive coating-FR-ECC", Eng. Struct., 246, 112887. https://doi.org/10.1016/j.engstruct.2021.112887.
  7. Choi, S.W., Kang, T.H., Lee, C., Kim, S.K., Kim, T.K. and Chang, S.H. (2021), "Fire resistance assessment in construction joint of precast fireproof duct slab", J. Korean Tunnel. Underg. Space Assoc., 23(5), 359-370. https://doi.org/10.9711/KTAJ.2021.23.5.359.
  8. Code, P. (2007), Eurocode 3: Design of Steel Structures-Part 1-2: General Rules-Structural Fire Design, European Committee for Standardisation, London.
  9. de Silva, D., Bilotta, A. and Nigro, E. (2019), "Experimental investigation on steel elements protected with intumescent coating", Constr. Build. Mater., 205, 232-244. https://doi.org/10.1016/j.conbuildmat.2019.01.223.
  10. Deng, J. and Lee, M.M. (2007), "Behaviour under static loading of metallic beams reinforced with a bonded CFRP plate", Compos. Struct., 78(2), 232-242. https://doi.org/10.1016/j.compstruct.2005.09.004.
  11. Ding, R., Fan, S., Wu, M. and Li, Y. (2021), "Numerical study on fire resistance of rectangular section stainless steel-concrete composite beam", Fire Saf. J., 125, 103436. https://doi.org/10.1016/j.firesaf.2021.103436.
  12. Elkhabeery, O.H., Safar, S.S. and Mourad, S.A. (2018), "Flexural strength of steel I-beams reinforced with CFRP sheets at tension flange", J. Constr. Steel Res., 148, 572-588. https://doi.org/10.1016/j.jcsr.2018.05.038.
  13. Fernando, D., Yu, T. and Teng, J.G. (2014), "Behavior of CFRP laminates bonded to a steel substrate using a ductile adhesive", J. Compos. Constr., 18(2), 04013040. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000439.
  14. Franssen, J.M. and Gernay, T. (2017), "Modeling structures in fire with SAFIR® : Theoretical background and capabilities", J. Struct. Fire Eng., 8(3), 300-323. https://doi.org/10.1108/JSFE07-2016-0010.
  15. Ghaderi, M., Ghaffarzadeh, H. and Maleki, V.A. (2015), "Investigation of vibration and stability of cracked columns under axial load", Earthq. Struct., 9(6), 1181-1192. https://doi.org/10.12989/eas.2015.9.6.1181.
  16. Gravit, M. and Dmitriev, I. (2022), "Light steel framing with mineral wool fire protection under fire exposure", Proceedings of MPCPE 2021, 247-257 .
  17. Guo, Z. and Huang, S.S. (2016), "Behaviour of restrained steel beam with reduced beam section exposed to fire", J. Constr. Steel Res., 122, 434-444. https://doi.org/10.1016/j.jcsr.2016.04.013.
  18. Han, Q., Ma, Q., Xu, J. and Liu, M. (2021), "Structural health monitoring research under varying temperature condition: A review", J. Civil Struct. Hlth. Monit., 11(1), 149-173. https://doi.org/10.1007/s13349-020-00444-x.
  19. Kada, A. and Lamri, B. (2019), "Numerical analysis of nonrestrained long-span steel beams at high temperatures due to fire", Asian J. Civil Eng., 20(2), 261-267. https://doi.org/10.1007/s42107-018-0103-7.
  20. Kadhim, M.M., Wu, Z. and Cunningham, L.S. (2019), "Experimental and numerical investigation of CFRPstrengthened steel beams under impact load", J. Struct. Eng., 145(4), 04019004. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002288.
  21. Li, G.Q., Zhang, C. and Jiang, J. (2018), "A review on fire safety engineering: Key issues for high-rise buildings", Int. J. HighRise Build., 7(4), 265-285. https://doi.org/10.21022/IJHRB.2018.7.4.265.
  22. Li, Z., Tang, F., Chen, Y., Tang, Y. and Chen, G. (2019), "Elastic and inelastic buckling of thin-walled steel liners encased in circular host pipes under external pressure and thermal effects", Thin Wall. Struct., 137, 213-223. https://doi.org/10.1016/j.tws.2018.12.044.
  23. Martinez, J. and Jeffers, A.E. (2021), "Analysis of restrained composite beams exposed to fire", Eng. Struct., 234, 111740. https://doi.org/10.1016/j.engstruct.2020.111740.
  24. Memarzadeh, A., Shahmansouri, A.A., Nematzadeh, M. and Gholampour, A. (2021), "A review on fire resistance of steelconcrete composite slim-floor beams", Steel Compos. Struct., 40(1), 13-32. https://doi.org/10.12989/scs.2021.40.1.013.
  25. Mesquita, L., Piloto, P., Vaz, M. and Real, P.V. (2005), "Experimental and numerical research on the critical temperature of laterally unrestrained steel I beams", J. Constr. Steel Res., 61(10), 1435-1446. https://doi.org/10.1016/j.jcsr.2005.04.003.
  26. Moeini, M. (2020), "Finite element study on the lateral behavior of tessellated structural-architectural reinforced concrete shear walls", State University of New York at Buffalo, USA.
  27. Moeini, M., Ghyabi, M. and Dolatshahi, K.M. (2017), "Seismic soil-pile interaction considering nonlinear soil column behavior in saturated and dry soil conditions", Int. J. Geotech. Geolog. Eng., 11(2), 188-194.
  28. Nadjai, A., Petrou, K., Han, S. and Ali, F. (2016), "Performance of unprotected and protected cellular beams in fire conditions", Constr. Build. Mater., 105, 579-588. https://doi.org/10.1016/j.conbuildmat.2015.12.150.
  29. Naser, M. (2018), "Deriving temperature-dependent material models for structural steel through artificial intelligence", Constr. Build. Mater., 191, 56-68. https://doi.org/10.1016/j.conbuildmat.2018.09.186.
  30. Qazani, M.R.C., Asadi, H., Khoo, S. and Nahavandi, S. (2019), "A linear time-varying model predictive control-based motion cueing algorithm for hexapod simulation-based motion platform", IEEE Trans. Syst. Man Cybernet.: Syst., 51(10), 6096-6110. https://doi.org/10.1109/TSMC.2019.2958062.
  31. Qazani, M.R.C., Asadi, H., Mohamed, S., Lim, C.P. and Nahavandi, S. (2022), "An optimal washout filter for motion platform using neural network and fuzzy logic", Eng. Appl. Artif. Intel., 108, 104564. https://doi.org/10.1016/j.engappai.2021.104564.
  32. Ren, B., Zhao, Y., Bai, H., Kang, S., Zhang, T. and Song, S. (2021), "Eco-friendly geopolymer prepared from solid wastes: A critical review", Chemosph., 267, 128900. https://doi.org/10.1016/j.chemosphere.2020.128900.
  33. Selmi, A. (2021), "Vibration behavior of bi-dimensional functionally graded beams", Struct. Eng. Mech., 77(5), 587. https://doi.org/10.12989/sem.2021.77.5.587.
  34. Stoll, F., Saliba, J.E. and Casper, L.E. (2000), "Experimental study of CFRP-prestressed high-strength concrete bridge beams", Compos. Struct., 49(2), 191-200. https://doi.org/10.1016/S0263-8223(99)00134-8.
  35. Syed, M., Moeini, M., Okumus, P., Elhami-Khorasani, N., Ross, B.E. and Kleiss, M.C.B. (2021), "Analytical study of tessellated structural-architectural reinforced concrete shear walls", Eng. Struct., 244, 112768. https://doi.org/10.1016/j.engstruct.2021.112768.
  36. Tlidji, Y., Benferhat, R. and Tahar, H.D. (2021), "Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity", Struct. Eng. Mech., 77(2), 217. https://doi.org/10.12989/sem.2021.77.2.217.
  37. Usmani, A.S., Rotter, J.M., Lamont, S., Sanad, A. and Gillie, M. (2001), "Fundamental principles of structural behaviour under thermal effects", Fire Saf. J., 36(8), 721-744. https://doi.org/10.1016/S0379-7112(01)00037-6.
  38. Wang, P., Wang, X. and Liu, M. (2014), "Practical method for calculating the buckling temperature of the web-post in a cellular steel beam in fire", Thin Wall. Struct., 85, 441-455. https://doi.org/10.1016/j.tws.2014.09.019
  39. Wang, P., Wang, X., Liu, M. and Zhang, L. (2016), "Web-post buckling of fully and partially protected cellular steel beams at elevated temperatures in a fire", Thin Wall. Struct., 98, 29-38. https://doi.org/10.1016/j.tws.2015.02.028.
  40. Yu, Y., Tian, P., Man, M., Chen, Z., Jiang, L. and Wei, B. (2021), "Experimental and numerical studies on the fire-resistance behaviors of critical walls and columns in modular steel buildings", J. Build. Eng., 44, 102964. https://doi.org/10.1016/j.jobe.2021.102964.