DOI QR코드

DOI QR Code

Hemorrhagic changes and microglia activation induced by Macrovipera lebetina obtusa venom with the inhibited enzymatic activity in rat brain

  • Voskanyan, Armen V. (Orbeli Institute of Physiology, National Academy of Sciences Armenia) ;
  • Darbinyan, Anna A. (Orbeli Institute of Physiology, National Academy of Sciences Armenia) ;
  • Parseghyan, Lilya M. (Orbeli Institute of Physiology, National Academy of Sciences Armenia)
  • Received : 2021.03.29
  • Accepted : 2021.06.25
  • Published : 2022.04.15

Abstract

The metalloproteinases and phospholipase A2 are the main enzymes in the venom of Macrovipera lebetina obtusa that play a decisive role in the destructive and toxic effects on the organism of the prey. Metalloproteinases cause hemorrhagic damage, destroy the basement membrane of the blood vessel and disrupt the connections between endothelial cells. Phospholipase A2 causes hemolysis of erythrocytes, destroy the cell membranes, and inhibits the adhesion of platelets and so on. The state of the capillaries of the rat brain and microglia under the action of the venom with separately inhibited enzymes was investigated and compared to the action of the crude venom. Also, the toxicity LD50 of the venom of Macrovipera lebetina obtusa with the inhibited enzymatic activity was determined. The histochemical study showed that the inhibition of phospholipase A2 enzymatic activity did not significantly change the vasodestructive effect of the venoms. In case of action of a venom with inhibited enzymatic activity of metalloproteinases, low activity of microglia and less damaged capillaries were observed. The toxicity of the venom with inhibited phospholipase A2 and with inhibited metalloproteinases was respectively 1.8 and 3.7 times weaker than that of the crude venom. We can claim that both the toxicity of the venom of Macrovipera lebetina obtusa, the damaged brain vessels and the increased activity of CNS microglia are determined mainly by the action of metalloproteinases.

Keywords

References

  1. Sanz L, Ayvazyan N, Calvete JJ (2008) Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei. J Proteomics. https://doi.org/10.1016/j.jprot.2008.05.003
  2. Darbinyan AA, Antonyan MV, Koshatashyan HR, Gevorgyan SS, Arestakesyan HV, Karabekian ZI, Ayvazyan NM, Voskanyan AV (2018) Changes in microglia activity of rat brain induced by Macrovipera lebetina obtusa venom. Neuroimmunol Neuroinflamm. https://doi.org/10.20517/2347-8659.2018.33
  3. Siigur J, Aaspollu A, Siigur E (2019) Biochemistry and pharmacology of proteins and peptides purified from the venoms of the snakes Macrovipera lebetina subspecies. Toxicon. https://doi.org/10.1016/j.toxicon.2018.11.294
  4. Ayvazyan NM, Zaqaryan NA, Ghazaryan NA (2012) Molecular events associated with Macrovipera lebetina obtusa and Montivipera raddei venom intoxication and condition of biomembranes. Biochim Biophys Acta Biomembranes. https://doi.org/10.1016/j.bbamem.2012.02.001
  5. Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutierrez JM (2009) Venoms, venomics, antivenomics. FEBS Lett. https://doi.org/10.1016/j.febslet.2009.03.029
  6. Wu X, Hart H, Cheng C, Roach P, Tatchell K (2001) Characterization of Gac1p, a regulatory subunit of protein phosphatase type I involved in glycogen accumulation in Saccharomyces cerevisiae. Mol Genet Genomics. https://doi.org/10.1007/s004380100455
  7. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm2125
  8. Lindsey ML, Iyer RP, Jung M, DeLeon-Pennell KY, Ma Y (2016) Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. J Mol Cell Cardiol. https://doi.org/10.1016/j.yjmcc.2015.12.018
  9. Wu WB, Huang TF (2003) Activation of MMP-2, cleavage of matrix proteins, and adherens junctions during a snake venom metalloproteinase-induced endothelial cell apoptosis. Exp Cell Res. https://doi.org/10.1016/S0014-4827(03)00183-6
  10. Samel M, Vija H, Kurvet I, Kunnis-Beres K, Trummal K, Subbi J, Kahru A, Siigur J (2013) Interactions of PLA2-s from Vipera lebetina, Vipera berus berus and Naja naja oxiana venom with platelets, bacterial and cancer cells. Toxins. https://doi.org/10.3390/toxins5020203
  11. Marcussi S, SantAna C, Oliveira C, Quintero Rueda A, Menaldo D, Beleboni R, Stabeli R, Giglio J, Fontes M, Soares A (2007) Snake Venom Phospholipase A2 Inhibitors: Medicinal Chemistry and therapeutic Potential. Curr Top Med Chem. https://doi.org/10.2174/156802607780487614
  12. Bazaa A, Pasquier E, Defilles C, Limam I, Kessentini-Zouari R, Kallech-Ziri O, Battari AE, Braguer D, Ayeb ME, Marrakchi N, Luis J (2010) MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions. PLoS ONE. https://doi.org/10.1371/journal.pone.0010124
  13. Evans AT, Formukong E, Evans FJ (1987) Activation of phospholipase A2 by cannabinoids. Lack of correlation with CNS effects. FEBS Lett. https://doi.org/10.1016/0014-5793(87)81420-5
  14. Darbinyan A, Antonyan M, Koshatashyan H, Parsegyan L, Bezuglov V, Voskanyan A (2019) Snake's and arthropod's venominduced pain-like behavior. Toxicon. https://doi.org/10.1016/j.toxicon.2018.11.369
  15. Hovhannisyan M, Voskanyan A, Bezuglov V, Vardapetyan H, Koshatashyan H, Darbinyan A, Antonyan M (2015) (274) Phospholipase A2 of Macrovipera lebetina obtusa venom as a main target to relief pain after snake bites. J Pain. https://doi.org/10.1016/j.jpain.2015.01.192
  16. Cotrim CA, De Oliveira SCB, Diz Filho EBS, Fonseca FV, Baldissera L, Antunes E, Ximenes RM, Monteiro HSA, Rabello MM, Hernandes MZ, De Oliveira Toyama D, Toyama MH (2011) Quercetin as an inhibitor of snake venom secretory phospholipase A2. Chem-Biol Interact. https://doi.org/10.1016/j.cbi.2010.10.016
  17. Ouyang Y, Kaminski NE (1999) Phospholipase A2 inhibitors p-bromophenacyl bromide and arachidonyl trifluoromethyl ketone suppressed interleukin-2 (IL-2) expression in murine primary splenocytes. Arch Toxicol. https://doi.org/10.1007/s002040050579
  18. Song J, Xu X, Zhang Y, Guo M, Yan X, Wang S, Gao S (2013) Purification and characterization of AHPM, a novel non-hemorrhagic P-IIIc metalloproteinase with α-fibrinogenolytic and platelet aggregation-inhibition activities, from Agkistrodon halys pallas venom. Biochimie. https://doi.org/10.1016/j.biochi.2012.10.013
  19. Leon G, Sanchez L, Hernandez A, Villalta M, Herrera M, Segura A, Estrada R, Gutierrez JM (2011) Immune response towards snake venoms. Inflamm Allergy Drug Targets. https://doi.org/10.2174/187152811797200605
  20. Nieuwenhuizen W, Kunze H, De Haas GH (1974) [15] Phospholipase A2 (Phosphatide Acylhydrolase, EC 3.1.1.04) from Porcine Pancreas. Methods Enzymol. https://doi.org/10.1016/0076-6879(74)32018-6
  21. Kondo H, Kondo S, Ikezawa H, Murata R, Ohsaka A (2014) Studies on the quantitative method for determination of hemorrhagic activity of habu snake venom. Jpn J Med Sci Biol. https://doi.org/10.7883/yoken1952.13.43
  22. Jaya V, Amira AZ, Syed MS, Norliana M, Halijah I, Stephen A (2017) Uncovering a protease in snake venom capable to coagulate milk to curd. Int J Adv Biotechnol Res 8:409-424
  23. Randhawa MA (2009) Calculation of LD50 values from the method of Miller and Tainter, 1944. J Ayub Med Coll Abbottabad 21:184-185
  24. Archundia IG, de Roodt AR, Ramos-Cerrillo B, Chippaux JP, Olguin-Perez L, Alagon A, Stock RP (2011) Neutralization of Vipera and Macrovipera venoms by two experimental polyvalent antisera: A study of paraspecificity. Toxicon. https://doi.org/10.1016/j.toxicon.2011.04.009
  25. Chilingaryan A, Chilingaryan AM, Martin GG (2006) The threedimensional detection of microvasculatory bed in the brain of white rat Rattus norvegicus by a CA2+-ATPase method. Brain Res. https://doi.org/10.1016/j.brainres.2005.11.059
  26. Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with imageJ. In: Biophotonics International
  27. Jose MG, Teresa E, Alexandra R, Cristina H (2016) Hemorrhage caused by snake venom metalloproteinases: a journey of discovery and understanding. Toxins (Basel) 8:93. https://doi.org/10.3390/toxins8040093
  28. Olamide TO, Patty KS, Heloisa SS-A, Dulce HFS (2020) Snake Venom Metalloproteinases (SVMPs): a structure-function update. Toxicon X 7:100052. https://doi.org/10.1016/j.toxcx.2020.100052
  29. Gyoneva S, Davalos D, Biswas D, Swanger SA, Garnier-Amblard E, Loth F, Akassoglou K, Traynelis SF (2014) Systemic inflammation regulates microglial responses to tissue damage in vivo. Glia. https://doi.org/10.1002/glia.22686
  30. Kettenmann H, Verkhratsky A (2011) Neuroglia-living nerve glue. Fortschritte Der Neurologie Psychiatrie. https://doi.org/10.1055/s-0031-12817 04
  31. Hovens I, Nyakas C, Schoemaker R (2014) A novel method for evaluating microglial activation using ionized calcium-binding adaptor protein-1 staining: cell body to cell size ratio. Neuroimmunol Neuroinflamm. https://doi.org/10.4103/ 2347-8659.139719