DOI QR코드

DOI QR Code

Chitosan-induced biomodification on demineralized dentin to improve the adhesive interface

  • 투고 : 2022.04.01
  • 심사 : 2022.05.18
  • 발행 : 2022.08.31

초록

Objectives: Metalloproteinase-inhibiting agents, such as chitosan, can prevent collagen degradation in demineralized dental substrates, thereby improving the adhesive interface. This study evaluated the bond strength (BS) and chemical and morphological characterization of the adhesive interface after applying chitosan solution to demineralized dentin. Materials and Methods: The 80 third molars were selected. Forty teeth underwent caries induction using the pH cycling method. The teeth were divided according to the treatment: distilled water (control) and 2.5% chitosan solution. The surfaces were restored using adhesive and composite resins. Half of the specimens in each group were aged, and the other half underwent immediate analyses. The teeth were sectioned and underwent the microtensile bond strength test (µTBS), and chemical and morphological analyses using energy-dispersive spectroscopy and scanning electron microscopy, respectively. Data analysis was performed using 3-way analysis of variance. Results: For µTBS, sound dentin was superior to demineralized dentin (p < 0.001), chitosan-treated specimens had higher bond strength than the untreated ones (p < 0.001), and those that underwent immediate analysis had higher values than the aged specimens (p = 0.019). No significant differences were observed in the chemical or morphological compositions. Conclusions: Chitosan treatment improved bond strength both immediately and after aging, even in demineralized dentin.

키워드

과제정보

The authors would like to thank the National Council for Scientific and Technological Development (CNPq) for the financial support (425631/2016-8).

참고문헌

  1. Brostek AM, Walsh LJ. Minimal intervention dentistry in general practice. Oral Health Dent Manag 2014;13:285-294.
  2. Comert S, Oz AA. Clinical effect of a fluoride-releasing and rechargeable primer in reducing white spot lesions during orthodontic treatment. Am J Orthod Dentofacial Orthop 2020;157:67-72. https://doi.org/10.1016/j.ajodo.2019.06.013
  3. Perdigao J. Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent Mater 2010;26:e24-e37.
  4. Chaussain-Miller C, Fioretti F, Goldberg M, Menashi S. The role of matrix metalloproteinases (MMPs) in human caries. J Dent Res 2006;85:22-32. https://doi.org/10.1177/154405910608500104
  5. Kato MT, Leite AL, Hannas AR, Calabria MP, Magalhaes AC, Pereira JC, Buzalaf MA. Impact of protease inhibitors on dentin matrix degradation by collagenase. J Dent Res 2012;91:1119-1123. https://doi.org/10.1177/0022034512455801
  6. Park KM, Lee HJ, Koo KT, Ben Amara H, Leesungbok R, Noh K, Lee SC, Lee SW. Oral soft tissue regeneration using nano controlled system inducing sequential release of trichloroacetic acid and epidermal growth factor. Tissue Eng Regen Med 2020;17:91-103. https://doi.org/10.1007/s13770-019-00232-9
  7. Mazzi-Chaves JF, Martins CV, Souza-Gabriel AE, Brito-Junior M, Cruz-Filho AM, Steier L, Sousa-Neto MD. Effect of a chitosan final rinse on the bond strength of root canal fillings. Gen Dent 2019;67:54-57.
  8. Machado AH, Garcia IM, Motta AS, Leitune VC, Collares FM. Triclosan-loaded chitosan as antibacterial agent for adhesive resin. J Dent 2019;83:33-39. https://doi.org/10.1016/j.jdent.2019.02.002
  9. Rodrigues MR. Synthesis and investigation of chitosan derivatives formed by reaction with acyl chlorides. J Carbohydr Chem 2005;24:41-54. https://doi.org/10.1081/CAR-200049412
  10. Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 2010;144:51-63. https://doi.org/10.1016/j.ijfoodmicro.2010.09.012
  11. Chronopoulou L, Nocca G, Castagnola M, Paludetti G, Ortaggi G, Sciubba F, Bevilacqua M, Lupi A, Gambarini G, Palocci C. Chitosan based nanoparticles functionalized with peptidomimetic derivatives for oral drug delivery. N Biotechnol 2016;33:23-31. https://doi.org/10.1016/j.nbt.2015.07.005
  12. Curylofo-Zotti FA, Tanta GS, Zucoloto ML, Souza-Gabriel AE, Corona SA. Selective removal of carious lesion with Er:YAG laser followed by dentin biomodification with chitosan. Lasers Med Sci 2017;32:1595-1603. https://doi.org/10.1007/s10103-017-2287-6
  13. Baena E, Cunha SR, Maravic T, Comba A, Paganelli F, Alessandri-Bonetti G, Ceballos L, Tay FR, Breschi L, Mazzoni A. Effect of chitosan as a cross-linker on matrix metalloproteinase activity and bond stability with different adhesive systems. Mar Drugs 2020;18:18.
  14. Persadmehr A, Torneck CD, Cvitkovitch DG, Pinto V, Talior I, Kazembe M, Shrestha S, McCulloch CA, Kishen A. Bioactive chitosan nanoparticles and photodynamic therapy inhibit collagen degradation in vitro. J Endod 2014;40:703-709. https://doi.org/10.1016/j.joen.2013.11.004
  15. Anjana J, Mohandas A, Seethalakshmy S, Suresh MK, Menon R, Biswas R, Jayakumar R. Bi-layered nanocomposite bandages for controlling microbial infections and overproduction of matrix metalloproteinase activity. Int J Biol Macromol 2018;110:124-132. https://doi.org/10.1016/j.ijbiomac.2017.12.043
  16. Curylofo-Zotti FA, Scheffel DL, Macedo AP, Souza-Gabriel AE, Hebling J, Corona SA. Effect of Er:YAG laser irradiation and chitosan biomodification on the stability of resin/demineralized bovine dentin bond. J Mech Behav Biomed Mater 2019;91:220-228. https://doi.org/10.1016/j.jmbbm.2018.12.022
  17. Pini NI, Lima DA, Luka B, Ganss C, Schlueter N. Viscosity of chitosan impacts the efficacy of F/Sn containing toothpastes against erosive/abrasive wear in enamel. J Dent 2020;92:103247.
  18. Fawzy AS, Nitisusanta LI, Iqbal K, Daood U, Beng LT, Neo J. Chitosan/Riboflavin-modified demineralized dentin as a potential substrate for bonding. J Mech Behav Biomed Mater 2013;17:278-289. https://doi.org/10.1016/j.jmbbm.2012.09.008
  19. Hashimoto M, Tay FR, Svizero NR, de Gee AJ, Feilzer AJ, Sano H, Kaga M, Pashley DH. The effects of common errors on sealing ability of total-etch adhesives. Dent Mater 2006;22:560-568. https://doi.org/10.1016/j.dental.2005.06.004
  20. Marquezan PK, Alves LS, Dalla Nora A, Maltz M, do Amaral Zenkner JE. Radiographic pattern of underlying dentin lesions (ICDAS 4) in permanent teeth. Clin Oral Investig 2019;23:3879-3883. https://doi.org/10.1007/s00784-019-02818-y
  21. Daood U, Iqbal K, Nitisusanta LI, Fawzy AS. Effect of chitosan/riboflavin modification on resin/dentin interface: spectroscopic and microscopic investigations. J Biomed Mater Res A 2013;101:1846-1856.
  22. Profeta AC, Mannocci F, Foxton RM, Thompson I, Watson TF, Sauro S. Bioactive effects of a calcium/ sodium phosphosilicate on the resin-dentine interface: a microtensile bond strength, scanning electron microscopy, and confocal microscopy study. Eur J Oral Sci 2012;120:353-362. https://doi.org/10.1111/j.1600-0722.2012.00974.x
  23. Borsatto MC, Martinelli MG, Contente MM, Mellara TS, Pecora JD, Galo R. Bond durability of Er:YAG laser-prepared primary tooth enamel. Braz Dent J 2013;24:330-334. https://doi.org/10.1590/0103-6440201302217
  24. Ganss C, Klimek J, Brune V, Schurmann A. Effects of two fluoridation measures on erosion progression in human enamel and dentine in situ. Caries Res 2004;38:561-566. https://doi.org/10.1159/000080587
  25. Castellan CS, Bedran-Russo AK, Antunes A, Pereira PN. Effect of dentin biomodification using naturally derived collagen cross-linkers: one-year bond strength study. Int J Dent 2013;2013:918010.
  26. Ururahy MS, Curylofo-Zotti FA, Galo R, Nogueira LF, Ramos AP, Corona SA. Wettability and surface morphology of eroded dentin treated with chitosan. Arch Oral Biol 2017;75:68-73. https://doi.org/10.1016/j.archoralbio.2016.11.017
  27. Gu LS, Cai X, Guo JM, Pashley DH, Breschi L, Xu HH, Wang XY, Tay FR, Niu LN. Chitosan-based extrafibrillar demineralization for dentin bonding. J Dent Res 2019;98:186-193. https://doi.org/10.1177/0022034518805419
  28. Costa AR, Garcia-Godoy F, Correr-Sobrinho L, Naves LZ, Raposo LH, Carvalho FG, Sinhoreti MA, Puppin-Rontani RM. Influence of different dentin substrate (caries-affected, caries-infected, sound) on long-term μTBS. Braz Dent J 2017;28:16-23. https://doi.org/10.1590/0103-6440201700879
  29. Yoshiyama M, Tay FR, Torii Y, Nishitani Y, Doi J, Itou K, Ciucchi B, Pashley DH. Resin adhesion to carious dentin. Am J Dent 2003;16:47-52.
  30. Stenhagen IS, Rukke HV, Dragland IS, Kopperud HM. Effect of methacrylated chitosan incorporated in experimental composite and adhesive on mechanical properties and biofilm formation. Eur J Oral Sci 2019;127:81-88. https://doi.org/10.1111/eos.12584
  31. Diolosa M, Donati I, Turco G, Cadenaro M, Di Lenarda R, Breschi L, Paoletti S. Use of methacrylate-modified chitosan to increase the durability of dentine bonding systems. Biomacromolecules 2014;15:4606-4613. https://doi.org/10.1021/bm5014124
  32. Perdigao J. New developments in dental adhesion. Dent Clin North Am 2007;51:333-357. https://doi.org/10.1016/j.cden.2007.01.001
  33. Rohanizadeh R, LeGeros RZ, Fan D, Jean A, Daculsi G. Ultrastructural properties of laser-irradiated and heat-treated dentin. J Dent Res 1999;78:1829-1835. https://doi.org/10.1177/00220345990780121001
  34. Beltrame APCA, Suchyta D, Abd Alraheam I, Mohammed A, Schoenfisch M, Walter R, Almeida IC, Souza LC, Miguez PA. Effect of phosphorylated chitosan on dentin erosion: an in vitro study. Caries Res 2018;52:378-386. https://doi.org/10.1159/000486521