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Summary 

In this study, a multi-objective robust job-shop scheduling 
(JSS) model was developed. The model considered multi-
jobs and multi-machines. The model also considered 
uncertain processing times for all tasks. Each job was 
assigned a specific due date and a tardiness penalty to be 
paid if the job was not delivered on time. If any job was 
completed early, holding expenses would be assigned.In 
addition, the model added idling penalties to accommodate 
the idling of machines while waiting for jobs. The problem 
assigned was to determine the optimal start times for each 
task that would minimize the expected penalties. A 
numerical problem was solved to minimize both the 
makespan and the total penalties, and a comparison was 
made between the results. Analysis of the results produced 
a prescription for optimizing penalties that is important to 
be accounted for in conjunction with uncertainties in the 
job-shop scheduling problem (JSSP). 

Keywords: Job-Shop Scheduling; Optimization; Uncertainty; 
Xpress-IVE; Robust; Penalty. 

1 Introduction 

Shop scheduling problems are well-known 
optimization problems in the field of operations research [1], 
[2]. 

1.1 Common Objectives of Optimization 

Different objective functions are used in scheduling 
problems, the makespan measure being the most common 
and widely implemented measure that is used. The 
makespan of a system is a measure of the total completion 
time required for all operations of all jobs in the system. 
Banu Calis et al. [3] summarized the well-established 
objective functions of the job-shop scheduling problem 
(JSSP). Table 1 shows the list of commonly used objectives 
followed by their definition. 

 

 

 

Table 1: Commonly used objectives in Shop Scheduling 

Objective Description 

Makespan  
Total completion time: the time taken to 
complete all jobs. 

The total 
workload 

The total processing time across all 
machines. 

Max workload 
The machine(s) with the largest processing 
time(s). 

Max lateness  
The largest difference between the 
completion time and due date. 

Mean flow time 
The average amount of time a given job 
spends on the shop floor. 

Tardiness 
The difference between a job's completion 
time and its deadline. 

Total tardiness The sum of all the jobs’ tardiness. 

Mean tardiness The average of all the jobs’ tardiness. 

Weighted 
tardiness 

The tardiness of a given job multiplied by a 
cost weight. 

 

The majority of studies on job-shop scheduling (JSS) have 
aimed to minimize the makespan [4]–[10]. Al-Ashhab et al. 
[11] proposed a mixed integer programming (MIP) model 
to minimize the makespan, total tardiness, and total 
earliness separately, whereas Al-Ashhab [12] used the 
lexicographic procedure to optimize the same three 
objectives instantly. Singh et al. [13] proposed a hybrid 
algorithm using cuckoo search optimization (CSO) with an 
enhancement scheme to solve the problem of minimizing 
the makespan. 

In other approaches, Lai et al. [14] solved the JSSP 
considering the mean flow time criterion subject to random 
processing times, whereas Chan et al. [15],[16] considered 
the minimization of the late cost, inventory cost, penalty 
cost, and setup cost in addition to the makespan. Huang [17] 
considered minimizing the costs of the setup time,  material 
processing, and inventory. Alzahrani [18] formulated a 
multi-objective JSS procedure to optimize the makespan, 
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total earliness, and total tardiness without considering their 
cost effects, using the pre-emptive constraint procedure. 

1.2 Shop Layouts 

Clewett [19] introduced a pioneering classification of 
scheduling problems into single-stage and multi-stage 
production systems. Single-stage layouts consist of single-
machine or parallel-machine systems, whereas multi-stage 
layouts include flow shop, job shop, and open-shop systems. 

Otala et al. [20] proposed a comprehensive classification of 
system layouts. They incorporated complicated modern 
layouts such as mixed-shop, cellular, and flexible 
manufacturing systems into their classification. Job shops 
(JSs) are well-known manufacturing systems built for a 
wide range of applications. The JSS problem is a frequent 
topic of study due to its NP-hardness [21]. 

1.3 Solving Methods 

Lin et al. [22] classified the methods used to solve 
scheduling problems based on the precision of their 
solutions. Many efforts have been made to solve the JSSP 
using different methods that have been developed for this 
purpose. These include mathematical programming [11], 
[23], goal programming [12], tabu search [24], ant colony 
optimization [25], memetic algorithms [26], simulated 
annealing [27], genetic algorithms [28], particle swarm 
optimization [29], [30], and differential evolution 
algorithms [31]. 

1.4 Uncertainty Optimization 

The majority of studies have approached the JSSP by 
assuming deterministic processing times, whereas others 
have been based on its uncertainty. Robustness and stability 
have also been considered [32]. Lu et al. [33] addressed the 
problem of finding a robust and stable schedule for a single 
machine. 

Al-Ashhab et al. [34] developed a single objective 
model to solve the JSSP that considered the uncertainties in 
the processing times. Wang et al. [35] also considered 
uncertain processing times. Tavakkoli-Moghaddam et al. 
[36] studied the JSSP with random operations in order to 
minimize the idling cost of machines. 

Varthanan et al. [37] developed an efficient particle 
swarm algorithm to solve both the deterministic and the 
stochastic problems and minimize the total cost. Golenko et 
al. [38] developed a single-objective optimization model to 
solve the JSSP with random durations and varying costs and 
expenses. 

Most of the aforementioned studies aimed at 
optimizing time-based objectives rather than cost-based 

objectives and most of the developed heuristics in the JSSP 
targeted the problem of time to minimize the makespan. A 
minority of studies considered how to solve the JSSP by 
considering the roles of time and cost simultaneously. 
Moreover, most studies have assumed job processing to be 
deterministic. A number of studies have considered 
uncertain processing times. 

The present study is an extension of prior work done 
by Al-Ashhab et al. [34] and Alzahrani [18] to solve the 
JSSP by processing several jobs with uncertain processing 
sequences on several machines, optimizing both time and 
cost objectives instantaneously, in the form of the 
lexicographic procedure. The model optimizes several 
objectives, including the makespan, maximum lateness, 
total lateness, total earliness, and total idling time of 
machines and other components. In the present study, the 
makespan, total tardiness, and total penalty costs due to 
earliness and tardiness of all jobs were optimized, in 
addition to the idling of all machines. The earliness penalty 
of a job refers to holding expenses where most products 
need specific storing conditions in addition to the storing 
space, a scenario that makes the holding process costly. 

2 Model Formulation 

The JSSP consists of the processing of multi-jobs on 
multi-machines and the determination of the starting and 
finishing times for each job on each machine that optimize 
the required objectives. 

The formulation of the model used in this study was based 
on the following assumptions: 

 The processing times are uncertain; 

 Each job is independent of the other jobs; 

 Each job has its own due date; 

 Each job will visit the same machine no more than 
once; 

 All jobs and machines are ready at time zero; 

 Each machine can process only one job at a time; 

 Recirculation is not allowed; 

 Each job may follow a unique path through the 
machines to fulfill all operations. 

 

The following sets, parameters, and decision variables were 
incorporated in the model: 
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i) Sets: 

J: The set of jobs 

M: The set of machines 

ii) Parameters: 

Pjm: The processing time for job j on machine m 

PMjm: The mean value of the processing time for job j on 
machine m 

PSjm: The standard deviation of the processing time for job 
j on machine m 

Dj: The due date of the job j, with j   J 

SEQ: The processing sequence array 

SCj: The storage expenses of job j per unit time 

DCj: The penalty of a delay in job j per unit time 

PCj: The penalty of a delay in job j 

IPm: The idling penalty of machine m per unit time 

Wj: The weight of job j 

 

iii) Decision Variables 

Sjm: The starting time of job j on machine m 

𝑆 , , : The starting time of job j on machine m in its 
sequence matrix 

𝑆 , , : The starting time of job j on the next machine 
(m+1) in its sequence matrix 

𝑃 , , : The processing time for job j on machine m in 
its sequence matrix 

Fjm: The finishing time of job j on machine m 

Cj: The completion time of job j 

Ej: The earliness of job j 

Tj: The tardiness of job j 

ITm: The idle time of machine m 

SPj: The single penalty for not performing job j on time (to 
be paid once) 

TPj: The tardiness penalty for job j 

EPj: The earliness penalty for job j 

TJj: A binary variable of tardy jobs 

M: Big number 

𝑌  
1, if job 𝑖 processed on machine 𝑚 after job 𝑗

0,     Otherwise
 

2.1 Objective Functions 

The developed model minimizes three objectives 
instantaneously: the makespan, total tardiness, and total 
penalty cost. 

2.1.1 Total Penalty Cost 
The total penalty cost is calculated by summing the 

costs due to the idling penalty of machines, the tardiness 
penalty, and the early penalty. 

The idling penalty of machines due to waiting for jobs is 
calculated using Eq. (1). It may be regarded as a nonutilized 
machine penalty. The idling penalty for each machine is 
calculated by multiplying its idle time (which is calculated 
using Eq. (2) by its idling penalty per unit of time. 

 

Idling non utilizing  Penalty  𝐼𝑇 ∗ 𝐼𝑃
∈

 (1) 

 

𝐼𝑇  max 𝐹  𝑃
∈

 (2) 

The tardiness penalty for each job is calculated by 
multiplying its tardiness (calculated using Eq. (3)) by the 
tardiness penalty for the same job. The sum of the tardiness 
penalties of all jobs produces the total tardiness penalty 
expressed in Eq. (4). 

 

𝑇  
𝐶 𝐷        if 𝐶 𝐷  

0     Otherwise
 (3) 

 
 

Tardiness Penalty  𝑇 ∗ 𝑇𝑃
∈

 (4) 

 

The earliness penalty of each job is calculated by 
multiplying its earliness time (calculated using Eq. (5)) by 
the earliness penalty associated with the storing of the same 
job. The sum of the earliness penalties of all jobs produces 
the total earliness penalty expressed in Eq. (6). 

 

𝐸  
𝐷 𝐶        if 𝐷 𝐶  

0     Otherwise
 (5) 
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Earliness Storage  Penalty  𝐸 ∗𝑊 ∗ 𝐸𝑃
∈

 (6) 

 

The objective of the total penalty is calculated using Eq. (7). 

 

Total Penalty 𝐼𝑇 ∗ 𝐼𝑃
∈

  𝑇 ∗ 𝑇𝑃
∈

 𝐸 ∗𝑊 ∗ 𝐸𝑃
∈

 
(7) 

 

2.1.2 Total Tardiness 
The total tardiness is the sum of the tardiness values of all 
jobs and is calculated using Eq. (8). 

 

Total Tardiness  𝑇
∈

 (8) 

 

2.1.3 Makespan function 
The makespan function represents the maximum 
completion time as expressed in Eq. (9). 

 

Makespan  max 𝐶  (9) 

 

2.2 Constraints 

The constraints expressed in Eq. (10) and Eq. (11) are 
called disjunction constraints. Their purpose is to avoid the 
overlapping of jobs on any machine. The constraint 
expressed in Eq. (12) is called the conjunction constraint. 
Its purpose is to assure processing precedence. 

 

𝑆 𝑆  𝑃 𝑀 𝑌 , ∀ 𝑖, 𝑗 ∈ 𝐽,∀ 𝑚 ∈ (10) 
 
𝑆 𝑆  𝑃 𝑀 1 𝑌 ,

∀ 𝑖, 𝑗 ∈ 𝐽,∀ 𝑚 ∈ 𝑀 
(11) 

 

𝑆 , , 𝑃 , , 𝑆 , ,  ,
∀ 𝑗 ∈ 𝐽,∀ 𝑚 ∈ 𝑀 1 

(12) 

 

3 Computational Results and Analysis 

The proposed model was solved using FICO 
XpressIVE optimization software using the Mosel language 
and ran on an Intel (R) Core (TM) i7-7700 CPU @ 3.60 
GHz computer with 8 GB RAM. 

3.1 Model Verification 

In this sub-section, the results of applying the proposed 
model are presented and analyzed. The accuracy and 
capability of the model were verified by solving a numerical 
problem. In order to simplify the verification discussion in 
this sub-section, the problem parameters were assumed to 
be deterministic, and the maximum allowable deviation of 
the objectives was assumed to be zero.  

Three problems with different ordering priorities of the 
three objectives presented in   

 

Table 2 were solved using the lexicographic procedure, 
assuming deterministic durations to verify the capability of 
the model. The corresponding processing hours, processing 
sequences, and due dates are presented in Table 3.  

 

Table 2: The orders of the three objectives for respective problems 

 Objective 1 Objective 2 Objective 3 

Prob. 1 Makespan  Total tardiness Total penalties 

Prob. 2 Total tardiness Makespan Total penalties 

Prob. 3 Total penalties Makespan Total tardiness 

Table 3: Durations, processing sequences, and due dates of jobs 

 Machine Job 1 Job 2 Job 3 

Duration (hours) 

M/C 1 50 100 50 

M/C 2 0 20 30 

M/C 3 40 50 60 

Processing 
sequence 

M/C 1 1 2 1 

M/C 2 0 1 3 

M/C 3 2 3 2 

Due date  100 200 300 

Earliness penalty 
per unit of time  

 1 1 1 

Tardiness penalty 
per unit of time  

 1 1 1 
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(i) Problem 1 

Table 4 and Fig. 1 display the schedule and Gantt chart, 
respectively, of Problem 1. The optimal makespan of this 
problem was 240 hours. The resulting values of the 
completion time, earliness, and tardiness of the three jobs 
are presented in Table 4. 

Table 4: Schedule of Problem 1 (in hours) 

 Job 1 Job 2 Job 3 Idling 

M/C 1 150 – 200 50 – 150 0 – 50 0 

M/C 2  0 – 20 210 – 240 190 

M/C 3 200 - 240 150 - 200 50 - 110 90 

Finishing 
Time 

240 200 240  

Due date 100 200 300  

Tardiness 140 0 0  

Earliness 0 0 60  

 

 

 

Fig. 1 The Gantt chart of Problem 1  

(ii) Problem 2 

 

Table 5 and Fig. 2 display the schedule and Gantt chart, 
respectively, of Problem 2. The optimal makespan of this 
problem was 290 hours. The resulting values of the 
finishing time, earliness, and tardiness of the three jobs are 
presented in  

Table 5. 

 

Table 5: Schedule of Problem 2 

 Job 1 Job 2 Job 3 Idling 

M/C 1 0 – 50 50 – 150 150 – 200 0 

M/C 2  0 – 20 260 – 290 240 

M/C 3 60 - 100 150 - 200 200 - 260 110 

Finishing Time 100 200 290  

Due date 100 200 300  

Tardiness 0 0 0  

Earliness 0 0 0  
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Fig. 2 The Gantt chart of Problem 2  

(iii) Problem 3 

The resulting schedule of Problem 3 is the same as the 
resulting schedule of Problem 2 as shown in  

Table 5, because the first optimized objectives in the two 
problems coincide in reducing the tardiness of all jobs. 

 

 

Fig. 3 Values of objectives at the different orders 

 

Fig. 3 represents the optimum resulting values of the three 
objectives in the three orders. It is clear that optimization of 
only the makespan, without consideration of other 
performance factors like tardiness, earliness, or the idling of 
machines, and without an allowance for an amount of 
deviation, did not produce practically acceptable schedules. 

It is concluded that the optimal ordering requires 
assigning priority to the minimization of the total penalty. 
The results obtained in the three problems provide clear 
evidence of the accuracy of the model. 
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3.2 Effect of the Maximum Variation of the 
Duration Times 

In this sub-section, the effects of the maximum 
variations of the duration times on the makespan, tardiness 
penalty, and total penalty are presented. The earliness, 
tardiness, and idling penalties per unit of time were each 

assumed to equal $1/unit of time to simplify the analysis. 
Fig. 4 shows that an increase in the variability of the 
processing time led to linear increases in both the makespan 
and the tardiness penalty. However, there was a brief period 
at the start of the process where the total penalty remained 
constant before it also followed a linear increase. 

 

 

Fig. 4 Effect of the maximum variation of the duration times on the makespan, tardiness penalty, and total penalty

Fig. 5 illustrates the effects of the maximum variations of 
the processing times on the components of the total penalty. 
A decrease in the initial penalty is observed. The decrease 

in the earliness penalty was due to the increase of the 
makespan. 

 

 

Fig. 5 Effect of the maximum variation of the components of the processing times on the total penalty

3.3 Effect of the Maximum Allowable Deviation 

In this sub-section, the effects of the maximum 
allowable deviations of the prior objectives are presented. 
Objectives were ordered as follows: First the makespan, 

followed by the total penalty, followed by the tardiness 
penalty. Fig. 6 illustrates that an increase in the maximum 
allowable deviations increased the value of the makespan 
while decreasing the total penalty and the tardiness penalty. 
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Fig. 6 Effect of the maximum allowable deviation of the prior objectives 

4 Conclusions 

In the very competitive modern industrial sector, even 
small gains in cost and time can be very valuable to a 
business. Therefore, the refinements introduced by this 
study and the results it presented could be of substantial 
benefit to certain process engineers. 

The developed model successfully solved the JSSP to 
optimize multi-objectives simultaneously considering 
uncertain processing times. The developed model was 
implemented using Robust MILP, coded using the Mosel 
language and solved using the XpressIVE solver. 

The accuracy and effectiveness of the model were 
verified by analyzing the obtained results. The model is 
capable of assessing many objectives beyond those 
presented in this study. A comparison was made between 
the results obtained in different cases. 

The penalties were found to play an important role in 
addition to the makespan. The proposed model is suitable 
for working in just-in-time environments. 

 It is clear that optimization of only the makespan, 
without consideration of other performance factors like 
tardiness, earliness, or the idling of machines, and without 
an allowance for an amount of deviation, did not produce 
practically acceptable schedules. 

It is concluded that the optimal ordering requires 
assigning priority to the minimization of the total penalty. 

Future research work should consider the following aspects 
in the context of the model presented in this study: 

 unexpected disruptions of machines 

 the layout of the workshop 

 the dynamic environment 

 the time and cost of transportation  
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