Vibration Measurements in the Mining Industry Applying the Software Install Application to the Kosovo Energy Corporation

Ibush Luzha¹, Naim Baftiu², Betim Maloku³ and Jusuf Qarkaxhija⁴

ibush.luzha@ubt-uni.net, naim.baftiu@uni-prizren.com,

betim.maloku@uni-prizren.com, jusuf.qarkaxhija@aab-edu.net

¹University for Business and Technology (UBT) Prishtine, ^{2,3}University "Ukshin Hoti" Prizren, ⁴AAB College Prishtine

Abstract

The assessment of specific impacts on the environment is a preventive measure for environmental protection which is based on the definition and proposal of measures that can prevent harmful effects, reduce or eliminate them. In the physical sense, vibration is the oscillating motion of an object with the effect of internal or external forces applied to it. People who touch a vibrating surface or object will feel these vibrations. In general, there are two types of vibration exposure. The first are the vibrations of the hands and arms transmitted by the held parts of tools or machinery. The second are whole-body vibrations transmitted from a seat or surface to a motorized car. The risk of injury to workers exposed to vibration varies depending on the size, frequency, type, duration of exposure, and organ affected. The purpose of this paper is to review the measurements of vibrations in the Kosovo Energy Corporation in the mine Sibovc Southwest, where coal with a rotary excavator is exploited and the evaluation of vibrations for working conditions for workers working in that environment and improving working conditions for the measurement of vibrations we have used the device Minimate DS 078, the purpose of such environmental impact assessment is to collect data and predict the harmful impacts on the environment, namely the impact on water, air, soil, life and health of as well as identify and propose measures that could prevent, reduce or eliminate altogether.

Keywords:

Environment, Vibrations, Software, Excavator

1. Introduction

Vibration measurements were performed at the Kosovo Energy Corporation, respectively at the Sibovci South mine. The measurements were made in 2021. Vibration measurements were made at four measuring points. During the measurements at work were five rotary excavators for coal excavation for the production of electricity with initials: Er - 1B, Er - 3B, Er. - 4B, Er. -4B, and Er. -6B.

Working methodology: Vibration measurements were performed according to EU Standard no. 44/2002.Vibration measurement was performed with the instrument Vibration meter "INSTATEL" Minimate DS

https://doi.org/10.22937/IJCSNS.2022.22.8.45

078 "of Canadian production. The measurement methods and elements are given in the following table [1]:

Table 1: Measurement methods, Typology of measurements [2]

Oscillation level n	Oscillation level measurement method, typology				
When used	During the operation of PKX-Main Mining Equipment				
Type of monitoring	Individual, momentary				
Measurement extension time	L = 10 (sec)				
Monitoring conditions: climatic conditions	The weather killed you with rain				
Location of measurements	The western part of the mine SJP (Grabovc), as well as the eastern part SJP (Hade) sensitive and mandatory locations.				
Development of measurements	27.01.2021: Measurement "1" 12:01 min "2" 12:10 min "3" 12:27 min Measurement "4" 12:35 min				
Method analysis	Comparison of measured values with allowed ones				

Table 2: Measurement V -1 western part of the mine SJP Grabove village [3]

1	Measureme	Types of	Measure
	nt point	measurement	d values
		S	
	V - 1	1.	Measure
	Coordinates	transversal	d 0.699
2	7500382	(X)	mm/s;
	4723776	2.	Measure
		vertical	d 0.318
		(Y)	mm/s;

Manuscript received August 5, 2022

Manuscript revised August 20, 2022

		3.	Measure
		longitudinal	d 0.318
		(Z)	mm/s;
	Vibration equation:	calculation	
	equation		Matura
	$Vr = \sqrt{V}$	V t 2 + V v 2 +	Values
3	V12 (mm/s)		0.831
•	ku janë	Vt – speed	mm/sec
	transverzal		
	Vv	– speed	
	verticale		Allowed
	Vl	- speed	values
	longiudinal		
			6.00
			mm/sec

Table 3: Measurement V - 2 western part of the mine SJP Grabovc village [4]

1	Measurem		Types of	Measured
	ent point	n	neasuremen	values
		ts	5	
	V - 2		1.	Measured
	Coordinates		transversa	0.381 mm/s;
2	7500382		1 (X)	
	4723776		2.	Measured
			vertical	1.02 mm/s;
			(Y)	
			3.	Measured
			longitudi	0.191 mm/s;
			nal (Z)	
	Vibration		calculation	
	equation:			
				Matura Values
	Vr =		t 2 + V v 2	1.105mm/s
3	+ V12 (mm/s)			ec
•				
	Where are	V	t – speed	
	transverzal			Allowed
	Vv		– speed	values
	verticale			6 0 0 V
	V1		- speed	6.00 mm/sec
	longiudinal			

Table 4: measurement	V	3 northern	part of	the mine.	[5]	

1	Measureme	Types of	Measure
	nt point	measurement	d values
		S	
	V - 3	1.	Measure
	Coordinates	Ttransversal	d 0.381
2	7500382	(X)	mm/s;
	4723776	2.	Measure
		Vertical	d 0.254
		(Y)	mm/s;

		3.	Measure
		Longitudinal	d 0.318
		(Z)	mm/s;
	Vibration	calculation	
	equation:		
			Matura
	Vr = / V	V t 2 + V v 2 +	Values
3	V12 (mm/s)		0.557
			mm/sec
	Where are	Vt – speed	
	transverzal		
	Vv	– speed	Allowed
	verticale		values
	V1	- speed	
	longiudinal	-	6.00
			mm/sec

Table 5: Measurement V - 4 southern part of the mine. [6]

Tuble J	Weasurement v - 4		i the nime. [0]
1	Measureme	Types of	Measure
	nt point	measurement	d values
		s	
	V - 4	1.	Measure
	Coordinates	Transversal	d 0.399
2	7500382	(X)	mm/s;
	4723776	2.	Measure
		Vertical	d 0.231
		(Y)	mm/s;
		3.	Measure
		Longitudinal	d 0.325
		(Z)	mm/s;
	Vibration	calculation	
	equation:		
	_		Matura
	Vr = / V	V t 2 + V v 2 +	Values
3	V12 (mm/s)		0.584
			mm/sec
	Where are	Vt – speed	
	transverzal	-	
	Vv	 speed 	Allowed
	verticale	-	values
	Vl	- speed	
	longiudinal	-	6.00
	-		mm/sec
	longiudinal	-	

Fig. 1 Excavator while working on coal [7]

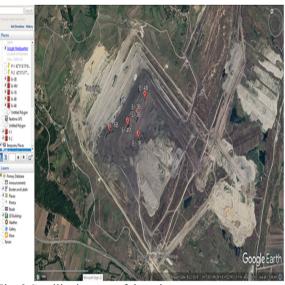


Fig. 3 Satellite images of the mine

Table 6: Vibration measurements during 2021

2. Measurements

The method of measuring the level of oscillation-vibration, typology for 2021.

A A	The state of the s	1 -0
F (68		
	1	Er AB
	Er4M Er0B 9	
		· Call
S. P	C C Pris	A DE ST
123		
	wy own up have a	Google Earth

Fig. 2 Satellite images of rotor excavators while working on coal mining [8]

Inde x num ber	Year 2021	Measur ement point #1 (mm/se c)	Meas ureme nt point #2 (mm/s	Meas ureme nt point #3 (mm/s	Meas ureme nt point #4 (mm/s
			ec))	ec)
1	January	0.342	1.410	0.741	1.900
2	February	0.342	1.410	0.741	1.900
3	March	0.064	0.156	0.142	0.064
4	April	0.059	0.213	0.489	0.963
5	May	0.078	0.485	0.879	1.020
6	June	0.079	0.496	0.852	0.987
7	July	0.457	1.448	0.684	0.901
8	August	1.003	0.291	0.775	0.262
9	September	0.569	0.412	0.561	0.090
10	October	0.371	0.342	0.110	1.440
11	November	0.371	0.342	0.110	1.440
12	December	0426	0.467	0.298	0.311
	Allowed		6 (mm	n/sec)	

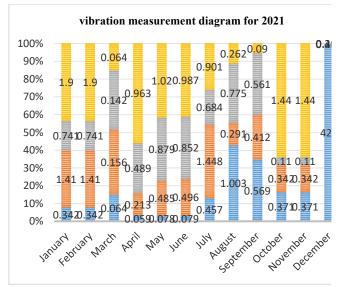
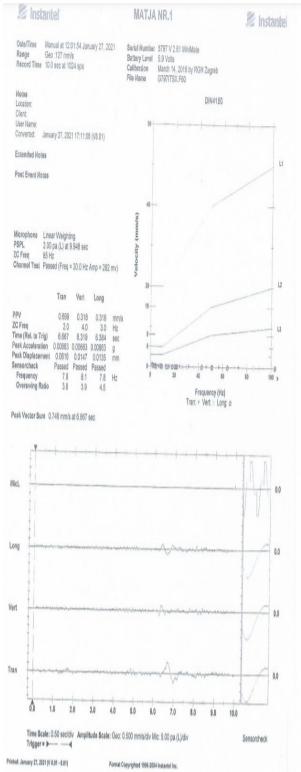
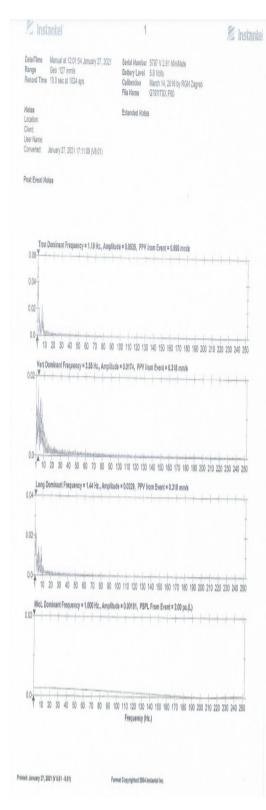




Fig. 4 Measurement diagram for 2021 in the mine Sibove S outh-west-KEC

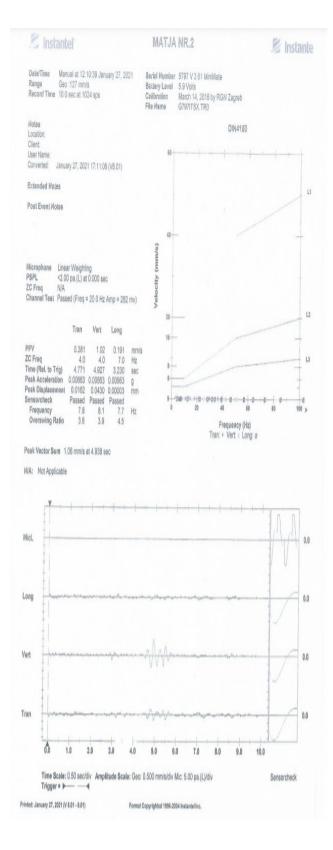


Fig. 5 Measurement number 1

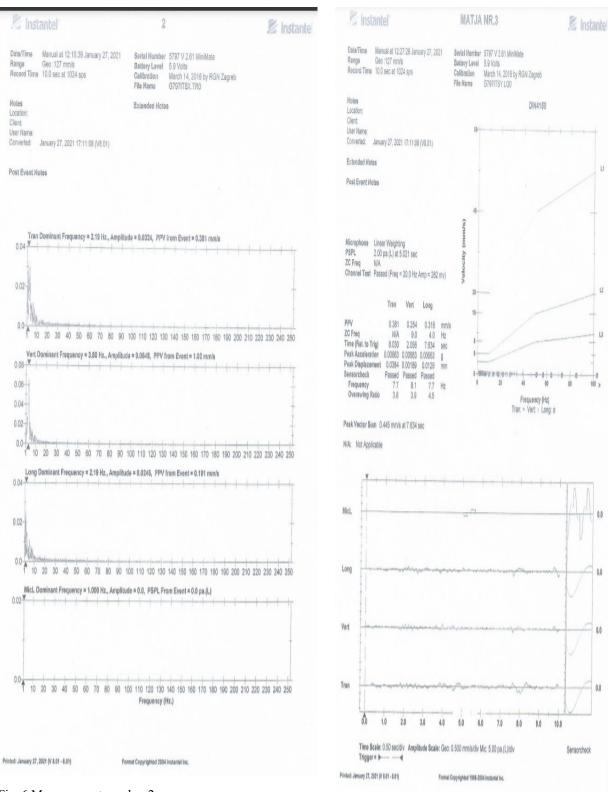


Fig. 6 Measurement number 2

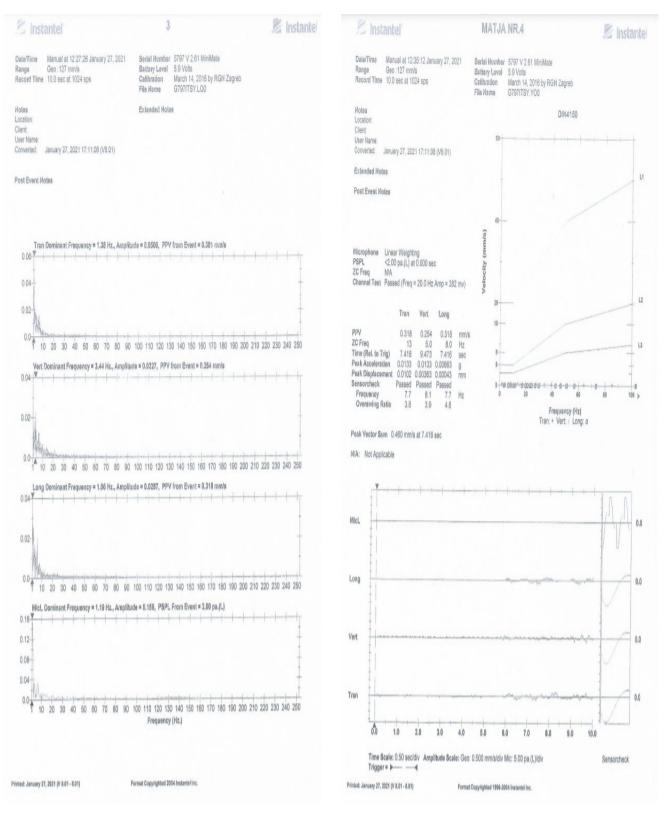


Fig. 7 Measurement number 3

368

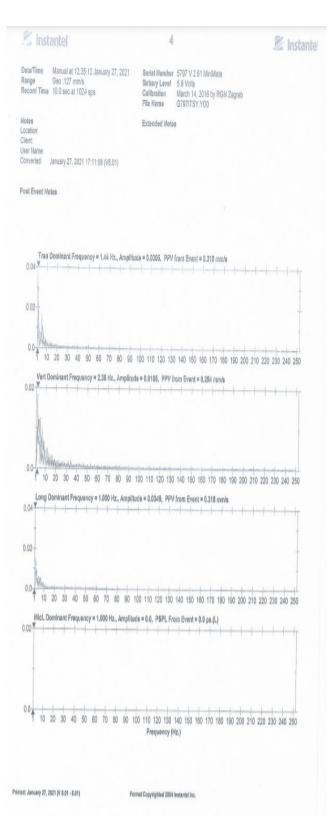


Fig. 8 Measurement number 4

Table 7: Types of measurements: T-transversal, V-vertical	,
L-lungtidionale	

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{tabular}{ c c c c c c c } \hline T & V & L \\ \hline PPV & mm/s & 0.699 & 0.318 & 0.318 \\ \hline Frequencies & Hz & 2.0 & 4.0 & 3.0 \\ \hline Length of time & Sec & 6.667 & 6.319 & 6.384 \\ \hline measured & & & & & & & & & & & & & & & & & & &$	Measu	uring	Unit	Measuring		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	param	eters	measuring		nr# 1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Т	V	L
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PP	V	mm/s	0.699	0.318	0.318
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Freque	ncies	Hz	2.0	4.0	3.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Lengt	th of				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Sec	6.667	6.319	6.384
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	measu	ured				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Peak a	ccess	g	0.0663	0.0663	0.0663
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Peak	shift	mm	0.0616	0.0147	0.0135
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Freque	ncies	Hz	7.8	8.1	7.8
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Over	load		2.0	2.0	4.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	rati	io	-	3.8	3.9	4.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	Measuring		N	Measuring	g
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	Т	V	L	Т	V	L
	0.318	1.02	0.191	0.381	0.254	0.318
	4.0	4.0		3.9	9.0	4.0
0.0162 0.0430 0.00003 0.0384 0.00189 0.0129 7.8 8.1 7.7 7.7 8.7 7.7 3.8 3.9 4.5 3.8 3.9 4.5 Measuring nr# 4 T V L 0.318 0.254 0.318 1.3 5.0 8.0 7.416 9.473 7.416 0.0004 3 3 0.0123 0.00363 0.0004 3 3 7.7 8.1 7.7	4.771	4.927	3.230	8.03	2.056	7.634
7.8 8.1 7.7 7.7 8.7 7.7 3.8 3.9 4.5 3.8 3.9 4.5 Measuring nr# 4 T V L 0.318 0.254 0.318 1.3 5.0 8.0 7.416 9.473 7.416 0.0133 0.0133 0.0663 0.0004 3 3 7.7 8.1 7.7	0.0663	0.0663	0.0663	0.0663	0.0663	0.0663
3.8 3.9 4.5 3.8 3.9 4.5 Measuring nr# 4 T V L 0.318 0.254 0.318 1.3 5.0 8.0 7.416 9.473 7.416 0.0102 0.00363 0.0004 3 7.7 8.1 7.7	0.0162	0.0430	0.00003	0.0384	0.00189	0.0129
Measuring nr# 4 T V L 0.318 0.254 0.318 1.3 5.0 8.0 7.416 9.473 7.416 0.0133 0.0133 0.0663 0.0102 0.00363 0.0004 3 7.7 8.1 7.7	7.8	8.1	7.7	7.7	8.7	7.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.8	3.9	4.5	3.8	3.9	4.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	Measur	ing			
	Т	V	L			
$\begin{array}{ccccc} 7.416 & 9.473 & 7.416 \\ 0.0133 & 0.0133 & 0.0663 \\ 0.0102 & 0.00363 & \begin{array}{c} 0.0004 \\ 3 \\ \end{array} \\ \hline 7.7 & 8.1 & 7.7 \end{array}$	0.318	0.254	0.318	1		
	1.3	5.0	8.0	1		
$\begin{array}{c cccc} 0.0102 & 0.00363 & \begin{array}{c} 0.0004 \\ 3 \\ \hline 7.7 & 8.1 & 7.7 \end{array}$	7.416	9.473	7.416			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0133	0.0133	3 0.0663			
7.7 8.1 7.7		0.0036		1		
The second se	7.7	8.1		1		
				1		

3. Conclusion

Table 7 shows the most important data obtained from the software device for the four measurements in the mine, with the measurement technique it can be seen that none of the four measurements have exceeded the measurement parameters distributed throughout the mine. The measured results and comparison with other measurement measurements of earlier years are very close to those of measurements for 2021.

The graphs show a comparison between the mean values of the measurement time and the comparative results of the measurements from the vibration source are within the allowable limits.

Based on the measured values, presented in tables 1, 2, 3 and 4 given in this paper we can conclude that the measured values in tables no. 1, no. 2, no. 3, and no. 4 are allowed, based on standard no. 44/2002 / EU. The time when we performed the measurements according to the report of the dispatcher at work were the following excavators: Er - 1B, Er - 3B, Er. - 4B, Er.-4B, and Er.-6B. The diagrams are also attached to the measurement report by the software device.

References

- Acoustical Society of America. "Acoustics and You (A Career in Acoustics?)" (në anglisht). Arkivuar nga origjinali origjinali më 4 shtator 2015. Marrë më 21 maj 2013.
- [2] Krylov, V.V. (2001). Noise and Vibration from Highspeed Trains (në anglisht). Thomas Telford. ISBN 9780727729637.
- [3] Acoustical Society of America. "Acoustics and You (A Career in Acoustics?)" (në anglisht). Arkivuar nga origjinali origjinali më 4 shtator 2015. Marrë më 21 maj 2021.
- [4] Rregullorja Nr. 05/2014 për Kërkesat Minimale të Sigurisë dhe Shëndetit në Përdorimin e Pajisjeve të Punës në Vendin e Punës.
- [5] Rregullorja Nr. 04/2014 për Kërkesat Minimale të Sigurisë dhe Shëndetit në Vendin e Punës.
- [6] Unite the Union, "Women's Health, Safety & Well-Being at Work", June 2012.
- [7] Matjet ne minieren e KEK-ut, Sibovci Jug-Perendimor.
- [8] Projects and measurements taken at the INKOS Institute, Kosovo