Acknowledgement
This research project was financially supported by National Natural Science Foundation of China (Grant No. 52178151); State Key Laboratory for Disaster Reduction of Civil Engineering (Grant No. SLDRCE19-B-22); and Shanghai TCM Chronic Disease Prevention and Health Service Innovation Center (Grant No. ZYJKFW201811009).
References
- Andam, K.A. (1986), "Floor live loads for office buildings", Build. Environ., 21(3-4), 211-219. https://doi.org/10.1016/0360-1323(86)90032-6
- Asantey, S.B.A. and Andam, K.A. (1996), "Factory and warehouse live load survey", Build. Environ., 31(2), 167-178. https://doi.org/10.1016/0360-1323(95)00035-6
- Bahdanau, D., Cho, K. and Bengio, Y. (2014), "Neural machine translation by jointly learning to align and translate", Proceedings of International Conference on Learning Representations, San Diego, CA, USA, May.
- Cha, Y.-J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aid. Civil Infrastruct. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Choi, E.C.C. (1990), "Live load for office buildings: effect of occupancy and code comparison", J. Struct. Eng., 116(11), 3162-3174. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(3162)
- Choi, E.C.C. (1991), "Extraordinary live load in office buildings", J. Struct. Eng., 117(11), 3216-3227. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:11(3216)
- Duan, Y., Chen, Q., Zhang, H., Yun, C., Wu, S. and Zhu, Q. (2019), "CNN-based damage identification method of tied-arch bridge using spatial-spectral information", Smart Struct. Syst., Int. J., 23(5), 507-520. https://doi.org/10.12989/sss.2019.23.5.507
- Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J. and Zisserman, A. (2010), "The pascal visual object classes (voc) challenge", Int. J. Comput. Vision, 88(2), 303-338. https://doi.org/10.1007/s11263-009-0275-4
- Ge, S.J., Chen, H., Sun, Z.S. and Li, J.B. (2008), "Survey and statistic of floor live load of residential building in central plains region", Build Struct., (07), 125-128. https://doi.org/10.19701/j.jzjg.2008.07.038
- Graves, A., Mohamed, A. and Hinton, G. (2013), "Speech recognition with deep recurrent neural networks", Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, May.
- Guo, A., Jiang, A., Lin, J. and Li, X. (2019), "Data mining algorithms for bridge health monitoring: kohonen clustering and lstm prediction approaches", J. Supercomput., 76(2), 932-947. https://doi.org/10.1007/s11227-019-03045-8
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, July.
- Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P. and Kingsbury, B. (2012), "Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups", IEEE Signal Process. Mag., 29(6), 82-97. https://doi.org/10.1109/msp.2012.2205597
- Ioffe, S. and Szegedy, C. (2015), "Batch normalization: accelerating deep network training by reducing internal covariate shift", Proceedings of the 32nd International Conference on Machine Learning, Lille, France, July.
- Jain, V. and Learned-Miller, E. (2010), "Fddb: a benchmark for face detection in unconstrained settings", UMass Amherst Technical Report; University of Massachusetts Amherst.
- Jin, X. and Zhao, J. (2012), "Development of the design code for building structures in China", Struct. Eng. Int., 22(2), 195-201. https://doi.org/10.2749/101686612X13291382990886
- Kaimal, J.C., Wyngaard, J.C., Izumi, Y. and Cote, O.R. (1972), "Spectral characteristics of surface-layer turbulence", Q. J. R. Meteorol. Soc., 98(417), 563-589. https://doi.org/10.1002/qj.49709841707
- Kingma, D.P. and Ba, J. (2015), "Adam: a method for stochastic optimization", Proceedings of International Conference on Learning Representations 2015, San Diego, CA, USA, May.
- Kumar, S. (2002a), "Live loads in office buildings: lifetime maximum load", Build. Environ., 37(1), 91-99. https://doi.org/10.1016/S0360-1323(00)00075-5
- Kumar, S. (2002b), "Live loads in office buildings: point-in-time load intensity", Build. Environ., 37(1), 79-89. https://doi.org/10.1016/S0360-1323(00)00074-3
- Kumar, M., Bhatia, R. and Rattan, D. (2017), "A survey of web crawlers for information retrieval", Wiley Interdiscip. Rev.-Data Mining Knowl. Discov., 7(6), e1218. https://doi.org/10.1002/widm.1218
- Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P. and Zitnick, C.L. (2014), "Microsoft coco: common objects in context", Proceedings of European Conference on Computer Vision, Zurich, Switzerland, September.
- Luo, L., Feng, M.Q., Wu, J. and Leung, R.Y. (2019), "Autonomous pothole detection using deep region-based convolutional neural network with cloud computing", Smart Struct. Syst., Int. J.., 24(6), 745-757. https://doi.org/10.12989/sss.2019.24.6.745
- Maas, A.L., Hannun, A.Y. and Ng, A.Y. (2013), "Rectifier nonlinearities improve neural network acoustic models", Proceedings of the 30th Workshop on Deep Learning for Audio, Speech and Language Processing, Atlanta, GA, USA, June.
- Ni, F., Zhang, J. and Chen, Z. (2018), "Pixel-level crack delineation in images with convolutional feature fusion", Struct. Control Health Monitor., 26(1), e2286. https://doi.org/10.1002/stc.2286
- Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A. and Kavukcuoglu, K. (2016), "Wavenet: a generative model for raw audio", arXiv preprint arXiv:1609.03499.
- Park, S., Jeong, H., Min, H., Lee, H. and Lee, S. (2018), "Waveletlike convolutional neural network structure for time-series data classification", Smart Struct. Syst., Int. J., 22(2), 175-183. https://doi.org/10.12989/sss.2018.22.2.175
- Redmon, J. and Farhadi, A. (2017), "YOLO9000: better, faster, stronger", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, July.
- Redmon, J. and Farhadi, A. (2018), "YOLOv3: an incremental improvement", arXiv preprint arXiv:1804.02767.
- Ren, S., He, K., Girshick, R. and Sun, J. (2016), "Faster r-cnn: towards real-time object detection with region proposal networks", IEEE Trans. Pattern. Anal. Mach. Intell., 39(6), 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
- Ruiz, S.E. and Sampayo-Trujillo, A. (1997), "Design live loads for classrooms in United States and Mexico", J. Struct. Eng., 123(12), 1652-1657. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:12(1652)
- Tang, Z., Chen, Z., Bao, Y. and Li, H. (2018), "Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring", Struct. Control Health Monitor., 26(1), e2296. https://doi.org/10.1002/stc.2296
- Wang, J. and Guo, Y. (2012), "Scrapy-based crawling and user-behavior characteristics analysis on taobao", Proceedings of 2012 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Sanya, China, October.
- Wang, D. and Li, J. (2012), "A random physical model of seismic ground motion field on local engineering site", Sci. China: Technol. Sci., 55(7), 2057-2065. https://doi.org/10.1007/s11431-012-4850-5
- Wu, X.Q., Yao, J.T. and Liu, Y.J. (2012), "Statistical analysis of live load on residence floor and analysis of residence floor reliability", Eng. Mech., 29(3), 90-94.
- Xie, P., Zhou, A. and Chai, B. (2019), "The application of long short-term memory (LSTM) method on displacement prediction of multifactor-induced landslides", IEEE Access, 7, 54305-54311. https://doi.org/10.1109/access.2019.2912419
- Xiong, J. and Chen, J. (2019), "A generative adversarial network model for simulating various types of human-induced loads", Int. J. Struct. Stab. Dyn., 19(08), 1950092. https://doi.org/10.1142/s0219455419500925
- Xu, Y., Bao, Y., Chen, J., Zuo, W. and Li, H. (2019), "Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images", Struct. Health Monitor., 18(3), 653-674. https://doi.org/10.1177/1475921718764873