DOI QR코드

DOI QR Code

A LSTM-based method for intelligent prediction on mechanical response of precast nodular piles

  • Chen, Xiao-Xiao (The First Affiliated Hospital of Wenzhou Medical University) ;
  • Zhan, Chang-Sheng (Wenzhou Ecological Park Development and Construction Investment Group Co., Ltd) ;
  • Lu, Sheng-Liang (School of Civil Engineering and Architecture, Wenzhou Polytechnic)
  • Received : 2021.10.11
  • Accepted : 2022.07.09
  • Published : 2022.08.25

Abstract

The determination for bearing capacity of precast nodular piles is conventionally time-consuming and high-cost by using numerous experiments and empirical methods. This study proposes an intelligent method to evaluate the bearing capacity and shaft resistance of the nodular piles with high efficiency based on long short-term memory (LSTM) approach. A series of field tests are first designed to measure the axial force, shaft resistance and displacement of the combined nodular piles under different loadings, in comparison with the single pre-stressed high-strength concrete piles. The test results confirm that the combined nodular piles could provide larger ultimate bearing capacity (more than 100%) than the single pre-stressed high-strength concrete piles. Both the LSTM-based method and empirical methods are used to calculate the shift resistance of the combined nodular piles. The results show that the LSTM-based method has a high-precision estimation on shaft resistance, not only for the ultimate load but also for the working load.

Keywords

Acknowledgement

The research described in this paper was financially supported by the research fund of Wenzhou Polytechnic (No. WZY2020003) and Wenzhou Ecological Park Management Committee (No. sty2020002). The source of financial support is gratefully acknowledged.

References

  1. Abu-Kiefa, M.A. (1998), "General regression neural networks for driven piles in cohesionless soils", J. Geotech. Geoenviron. Eng., ASCE, 124(12), 1177-1185. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1177)
  2. Altaee, A., Fellenius, B.H. and Evgin, E. (1992), "Axial load transfer for piles in sand I: tests on an instrumented precast pile", Can. Geotech. J., 29(1), 11-20. https://doi.org/10.1139/t92-002
  3. Baziar, M.H., Kashkooli, A. and Saeedi-Azizkandi, A. (2012), "Prediction of pile shaft resistance using cone penetration tests (CPTs)", Comput. Geotech., 45, 74-82. https://doi.org/10.1016/j.compgeo.2012.04.005
  4. Borda, O., Uno, M. and Towhata, I. (2007), "Shaft capacity of nodular piles in loose sand", Proceedings of the 49th National Conference, Japanese Geotechnical Society, Vol. 2, pp. 175-176. [In Japanese]
  5. Bredy, S. and Jandora, J. (2019), "Three-Dimensions Modelling of a Jet Pile Construction in the Karolinka Dam", Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(3), 637-648. https://doi.org/10.11118/actaun201967030637
  6. Canakcila, H. and Hamed, M. (2017), "Experimental study on axial response of different pile materials in organic soil", Geomech. Eng., Int. J., 12(6), 899-917. http://doi.org/10.12989/gae.2017.12.6.899
  7. Chai, J.C., Shen, J.S.L., Liu, M.D. and Yuan, D.J. (2018), "Predicting the performance of embankments on PVD-improved subsoils", Comput. Geotech., 93, 222-231. https://doi.org/10.1016/j.compgeo.2017.05.018
  8. Chan, W.T., Chow, Y.K. and Liu, L.F. (1995), "Neural network: an alternative to pile driving formulas", Comput. Geotech., 17(2), 135-156. https://doi.org/10.1016/0266-352X(95)93866-H
  9. Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, Int. J., 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463
  10. Elbaz, K., Shen, S.L., Zhou, A.N., Yuan, D.J. and Xu, Y.S. (2019), "Optimization of EPB shield performance with adaptive neuro-fuzzy inference system and genetic algorithm", Appl. Sci., 9(4), 780. https://doi.org/10.3390/app9040780
  11. Fang, K., Pan, M. and Shen, C.P. (2019), "The value of SMAP for long-term soil moisture estimation with the help of deep learning", IEEE Transact. Geosci. Remote Sens., 57(4), 2221-2233. https://doi:10.1109/TGRS.2018.2872131
  12. Gao, M.Y., Zhang, N., Shen, S.L. and Zhou, A. (2020), "Real-time dynamic earth-pressure regulation model for shield tunneling by integrating GRU deep learning method with GA optimization", IEEE Access, 8, 64310-64323. https://doi.org/10.1109/ACCESS.2020.2984515
  13. Gao, Y., Li, Z., Sun, D.A. and Yu, H.H. (2021), "A simple method for predicting the hydraulic properties of unsaturated soils with different void ratios", Soil Tillage Res., 209, 104913. https://doi.org/10.1016/j.still.2020.104913
  14. Ghorbani, B., Sadrossadat, E., Bazaz, J.B. and Oskooei, P.R. (2018), "Numerical ANFIS-based formulation for prediction of the ultimate axial load bearing capacity of piles through CPT data", Geotech. Geol. Eng., 3, 1-20. https://doi:10.1007/s10706-018-0445-7
  15. Goh, A.T.C. (1996), "Pile driving records reanalyzed using neural networks", J. Geotech. Geoenviron. Eng., ASCE, 122(6), 492-495. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(492)
  16. Hazrati, H., Karimi, N. and Jafarzadeh, Y. (2020), "Performance and antifouling properties of PVDF/PVP and PSf membranes in MBR: A comparative study", Membr. Water Treat., Int. J., 11(2), 159-166. http://doi.org/10.12989/mwt.2020.11.2.159
  17. Horiguchi, T. and Karkee, M.B. (1995), "Load tests on bored PHC nodular piles in different ground conditions and the bearing capacity based on simple soil parameters", Proceedings of Technical Report of Japanese Architectural Society, pp. 89-94. https://doi.org/10.3130/aijt.1.89
  18. Ji, F., Ding, J.W., Hon,g Z.S. and Gui, Y. (2011), "Experimental study on dewatering dredged clay with ventilating vacuum method", Adv. Mater. Res., 5, 261-263. https://doi.org/10.4028/www.scientific.net/AMR.261-263.1650
  19. Khanmohammadi, M. and Fakharian, K. (2018), "Evaluation of performance of piled-raft foundations on soft clay: A case study", Geomech. Eng., Int. J., 14(1), 43-50. https://doi.org/10.12989/gae.2018.14.1.043
  20. Lee, I.M. and Lee, J.H. (1996), "Prediction of pile bearing capacity using artificial neural networks", J. Comput. Geotech., 18(3), 189-200. https://doi.org/10.1016/0266-352X(95)00027-8
  21. Li, A.G., Tham, L.G., Wen, J.P. and Chen, S.C. (2014), "Case study of ground improvement to Qianhai reclamation area", In: Ground Improvement and Geosynthetics, Geotechnical Special Publication, Qianhai Bay, Shenzhen, China, pp. 231-240. https://doi.org/10.1061/9780784413401.023
  22. Ling, Z., Wang, W., Wu, J., Huang, M. and Yuan, J. (2018), "Shaft resistance of pre-bored precast pile in shanghai clay", Proceedings of the ICE - Geotechnical Engineering, pp. 1-47. https://doi.org/10.1680/jgeen.18.00028
  23. Liu, H.B., Zhang, Q. and Zhang, B.H. (2017), "Structural health monitoring of a newly built high-piled wharf in a harbor with fiber Bragg grating sensor technology: Design and deployment", Smart Struct. Syst., Int. J., 20(2), 163-173. https://doi.org/10.12989/sss.2017.20.2.163
  24. Lu, S.L., Zhang, N., Shen, S.L., Zhou, A. and Li, H.Z. (2020), "A deep-learning method for evaluating shaft resistance of the cast-in-site pile on reclaimed ground using field data", J. Zhejiang Univ.-SCIENCE A, 21(6), 496-508. https://doi.org/10.1631/jzus.A1900544
  25. Ma, H.P., Chen, Z.Y. and Yu, S. (2014), "Correlations of soil shear strength with specific penetration resistance of CPT in shanghai area", Yantu Lixue/Rock and Soil Mechanics, 35(2), 536-542. https://doi.org/10.16285/j.rsm.2014.02.021
  26. Mayne, P.W. and Kulhawy, F.H. (1982), "K0-OCR relationships in soil", J. Geotech. Eng. Div., 108(6), 851-872. https://doi.org/10.1061/AJGEB6.0001306
  27. Modoni, G. and Bzowka, J. (2012), "Analysis of foundations reinforced with jet grouting", J. Geotech. Geoenviron. Eng., 138(12), 1442-1454. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000718
  28. Moradi, G., Abdolmaleki, A. and Soltani, P. (2019), "Small-and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method", Geomech. Eng., Int. J., 18(3), 315-328. https://doi.org/10.12989/gae.2019.18.3.315
  29. MOHURD (Ministry of Housing and Urban-Rural Devel-opment of the People's Republic of China) (2014), Technical Code for Testing of Building Foundation Piles, JGJ106-2014, National Standards of the People's Republic of China. [In Chinese]
  30. Nonaka, T., Yamada, S. and Noda, T. (2017), "Soil-water coupled analysis of pore water pressure dissipation in performance design-examinations of effectiveness in reclaimed ground", Geotech. Eng., 48(4), 19-31.
  31. Ni, S.H., Yang, Y.Z. and Lyu, C.R. (2017), "Application of wavelet transform for the impulse response of pile", Smart Struct. Syst., Int. J., 19(5), 513-521. https://doi.org/10.12989/sss.2017.19.5.513
  32. Ozcan, G., Kocak, Y. and Gulbandilar, E. (2017), "Estimation of compressive strength of BFS and WTRP blended cement mortars with machine learning models", Comput. Concrete, Int. J., 19(3), 275-282. https://doi.org/10.12989/cac.2017.19.3.275
  33. Park, H., Lee, S.R., Yoon, S. and Choi, J.C. (2013), "Evaluation of thermal response and performance of PHC energy pile: field experiments and numerical simulation", Appl. Energy, 103, 12-24. https://doi.org/10.1016/j.apenergy.2012.10.012
  34. Randolph, M.F. and Murphy, B.S. (1985), "Shaft capacity of driven piles in clay", Proceedings of the 17th Annual Offshore Technology Conference, Houston, TX, USA, pp. 371-378.
  35. Sardehaei, E.A., Mehrjardi, G.T. and Dawson, A. (2019), "Full-scale investigations into installation damage of nonwoven geotextiles", Geomech. Eng., Int. J., 17(1), 81-95. https://doi.org/10.12989/gae.2019.17.1.081
  36. Shen, S.L., Wu, H.N., Cui, Y.J. and Yin, Z.Y. (2014), "Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai", Tunnell. Undergr. Space Technol., 40, 309-323. https://doi.org/10.1016/j.tust.2013.10.013
  37. Tang, L.B., Ma, Y.B., Wang, L., Zhang, W.G., Zheng, L.N. and Wen, H.J. (2021), "Application of Long Short-Term Memory Neural Network and Prophet algorithm in Slope Displacement Prediction", Int. J. Geoeng. Case Histories, 6(4), 48-66. http://dx.doi.org/10.4417/IJGCH-06-04-04
  38. Teh, C.I., Wong, K.S., Goh, A.T.C. and Jaritngam, S. (1997), "Prediction of pile capacity using neural networks", J. Comput. Civil Eng., ASCE, 11(2), 129-138. https://doi.org/10.1061/(ASCE)0887-3801(1997)11:2(129)
  39. Wang, K. and Sun, W.C. (2018), "A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning", Comput. Methods Appl. Mech. Eng., 334, 337-380. https://doi.org/10.1016/j.cma.2018.01.036
  40. Wang, Z.F., Shen, J.S. and Cheng, W.C. (2018), "Simple method to predict ground displacements caused by installing horizontal jet-grouting columns", Mathe. Problems Eng., ID 1897394. https://doi.org/10.1155/2018/1897394
  41. Wang, X.W., Yang, T.L., Xu, Y.S. and Shen, S.L. (2019a), "Evaluation of optimized depth of waterproof curtain to mitigate negative impacts during dewatering", J. Hydrol., 577(2019), 123969. https://doi.org/10.1016/j.jhydrol.2019.123969
  42. Wang, W.D., Ling, Z., Wu, J.B. and Yuan, J.Y. (2019b), "Field study on bearing characteristics of pre-bored precast pile with enlarged base in Shanghai", J. Build. Struct., 40(2), 238-245. [In Chinese] https://doi.org/10.14006/j.jzjgxb.2019.02.023
  43. Wu, Y.X., Shen, S.L., Lyu, H.M. and Zhou, A.N. (2020), "Analyses of leak-age effect of waterproof curtain during excavation dewatering", J. Hydrol., 583, 124582. https://doi.org/10.1016/j.jhydrol.2020.124582
  44. Ye, X., Lyu, Z. and Foong, L.K. (2020), "Hybridized dragonfly, whale and ant lion algorithms in enlarged pile's behavior", Smart Struct. Syst., Int. J., 25(6), 765-778. https://doi.org/10.12989/sss.2020.25.6.765
  45. Zhang, R.R. (2008), "A simple approach for quality evaluation of non-slender, cast-in-place piles", Smart Struct. Syst., Int. J., 4(1), 1-17. https://doi.org/10.12989/sss.2008.4.1.001
  46. Zhang, N., Shen, S.L., Wu, H.N., Chai, J.C., Xu, Y.S. and Yin, Z.Y. (2015), "Evaluation of effect of basal geotextile reinforcement under embankment loading on soft marine deposits", Geotext. Geomembr., 43(6), 506-514. https://doi.org/10.1016/j.geotexmem.2015.05.005
  47. Zhang, N., Shen, S.L., Zhou, A.N. and Xu, Y.S. (2019), "Investigation on performance of neural network using quadratic relative error cost function", IEEE Access, 7, 106642-106652, https://doi.org/10.1109/ACCESS.2019.2930520
  48. Zhang, W., Zhang, R., Wu, C., Goh, A.T.C., Lacasse, S., Liu, Z. and Liu, H. (2020a), "State-of-the-art review of soft computing applications in underground excavations", Geosci. Frontiers, 11(4), 1095-1106. https://doi.org/10.1016/j.gsf.2019.12.003
  49. Zhang, W.G., Li, H.R., Wu, C.Z., Li, Y.Q., Liu, Z.Q. and Liu, H.L. (2020b), "Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling", Undergr. Space, 6(4), 353-363. https://doi.org/10.1016/j.undsp.2019.12.003
  50. Zhang, W.G., Wu, C.Z., Zhong, H.Y., Li, Y.Q. and Wang, L. (2021a), "Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization", Geosci. Frontiers, 12(1), 469-477. https://doi.org/10.1016/j.gsf.2020.03.007
  51. Zhang, W.G., Li, H.R., Li, Y.Q., Liu, H.L., Chen, Y.M. and Ding, X.M. (2021b), "Application of deep learning algorithms in geotechnical engineering: a short critical review", Artif. Intell. Rev., 54(8), 5633-5673. https://doi.org/10.1007/s10462-021-09967-1
  52. Zhang, W.G., Wu, C.Z., Li, Y.Q., Wang, L. and Samui, P. (2021c), "Assessment of pile drivability using random forest regression and multivariate adaptive regression splines", Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 15(1), 27-40. https://doi.org/10.1080/17499518.2019.1674340
  53. Zhang, N., Shen, S.L., Zhou, A. and Jin, Y.F. (2021d), "Application of LSTM approach for modelling stress-strain behaviour of soil", Appl. Soft Comput., 100, 106959. https://doi.org/10.1016/j.asoc.2020.106959
  54. Zhou, J., Gong, X., Wang, K., Zhang, R. and Yan, T. (2014), "Application of static drill rooted precast nodular pile in soft soil foundation and calculation for bearing capacity", Chinese J. Rock Mech. Eng., 33(2), 4359-4366. https://doi.org/10.13722/j.cnki.jrme.2014.s2.121
  55. Zhou, M., Liu, H., Hossain, M.S., Hu, Y. and Zhang, T. (2016), "Numerical simulation of plug formation during casing installation of cast-in-place concrete pipe (PCC) piles", Can. Geotech. J., 53(7), 1-17. https://doi.org/10.1139/cgj-2015-0162