DOI QR코드

DOI QR Code

Free vibration responses of nonlinear FG-CNT distribution in a polymer matrix

  • 투고 : 2020.12.20
  • 심사 : 2022.05.05
  • 발행 : 2022.08.25

초록

The object of this paper is to investigate the free vibration behavior under the effect of carbon nanotube distribution in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) by using higher-order shear deformation theories. In this work, we present a novel distribution method for carbon nanotubes in the polymer matrix by using a new exponential power law distribution of carbon nanotube volume fraction. It is assumed that the SWCNTs are aligned along the beam axial direction and the distribution of the SWCNTs may vary through the thickness of the beam with different patterns of reinforcement. The rule of mixtures is used in order to obtain material properties of the CNTRC beams. Hamilton's principle is used in deriving the equations of motion. The validity of the free Vibration results is examined by comparing them with those of the known data in the literature. The results that obtained indicate that the carbon nanotube volume fraction distribution play a very important role on the free vibrations characteristics of the CNTRC beam.

키워드

참고문헌

  1. Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal effects on the free vibration behavior of composite plate using nth-order shear deformation theory: a micromechanical approach", Iran. J. Sci. Technol., Transact. Mech. Eng., 43(1), 61-73. https://doi.org/10.1007/s40997-017-0140-y
  2. Ahmed, H., Mohamed, Z. and Mohamed, S. (2018), "A refined shear deformation plate theory for static and free vibration analysis of functionally graded plates", Ejovoc (Electronic Journal of Vocational Colleges), 8(2), 142-144. Retrieved from: https://dergipark.org.tr/en/pub/ejovoc/issue/41199/497946
  3. Ajayan, P.M., Stephan, O., Colliex, C. and Trauth, D. (1994), "Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite", Science, 265(5176), 1212-1214. https://doi.org/10.1126/science.265.5176.1212
  4. Alankaya, V. and Erdonmez, C. (2017), "Bending performance of laminated sandwich shells in hyperbolic paraboloidal form", Steel Compos. Struct., Int. J., 25(3), 337-346. https://doi.org/10.12989/scs.2017.25.3.337
  5. Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., Int. J., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141
  6. Arani, A.G., Pourjamshidian, M. and Arefi, M. (2018), "Nonlinear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory", Smart Struct. Syst., Int. J., 22(1), 105-120. https://doi.org/10.12989/sss.2018.22.1.105
  7. Arefi, M., Bidgoli, E.M.R., Dimitri, R. and Tornabene, F. (2018), "Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Aerosp. Sci. Technol., 81, 108-117. https://doi.org/10.1016/j.ast.2018.07.036
  8. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
  9. Avcar, M. and Alwan, H.H.A. (2017), "Free vibration of functionally graded Rayleigh beam", Int. J. Eng. Appl. Sci., 9(2), 127-137. https://doi.org/10.24107/ijeas.322884
  10. Bachtold, A., Hadley, P., Nakanishi, T. and Dekker, C. (2001), "Logic circuits with carbon nanotube transistors", Science, 294(5545), 1317-1320. https://doi.org/10.1126/science.1065824
  11. Baltacioglu, A.K. and Civalek, O. (2018), "Numerical approaches for vibration response of annular and circular composite plates", Steel Compos. Struct., Int. J., 29(6), 755-766. https://doi.org/10.12989/scs.2018.29.6.759
  12. Bensattalah, T., Zidour, M., Daouadji, T.H. and Bouakaz, K. (2019), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., Int. J., 70(3), 269-277. https://doi.org/10.12989/sem.2019.70.3.269
  13. Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/JNanoR.62.108
  14. Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., Int. J., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517
  15. Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircr. Spacecr. Sci., Int. J., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001
  16. Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda-Bedia, E.A. (2014), "Hygrothermal effects on the postbuckling response of composite beams", Am. J. Mater. Res., 1(2), 35-43. https://doi.org/10.12989/scs.2018.27.6.777
  17. Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda-Bedia, E.A. (2015), "Postbuckling analysis of functionally graded beams using hyperbolic shear deformation theory", Rev. Inform. Eng. Applicat., 2(1), 1-14. https://doi.org/10.18488/journal.79/2015.2.1/79.1.1.14
  18. Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., Int. J., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209
  19. Do, Q.C., Pham, D.N., Vu, D.Q., Vu, T.T.A. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., Int. J., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243
  20. Dresselhaus, M.S. and Avouris, P. (2001), "Introduction to carbon materials research", In: Carbon Nanotubes, pp. 1-9, Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39947-X
  21. Ebrahimi, F. and Daman, M. (2017), "Nonlocal thermo-electromechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam", Smart Struct. Syst., Int. J., 20(3), 351-368. http://doi.org/10.12989/sss.2017.20.3.351
  22. Eltaher, M.A., Mohamed, N. and Mohamed, S.A. (2020), "Nonlinear buckling and free vibration of curved CNTs by doublet mechanics", Smart Struct. Syst., Int. J., 26(2), 213-226. https://doi.org/10.12989/sss.2020.26.2.213
  23. Fariborz, J. and Batra, R.C. (2019), "Free vibration of bidirectional functionally graded material circular beams using shear deformation theory employing logarithmic function of radius", Compos. Struct., 210, 217-230. https://doi.org/10.1016/j.compstruct.2018.11.036
  24. Farokhian, A. and Kolahchi, R. (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., Int. J., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555
  25. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
  26. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099
  27. Karami, B., Janghorban, M. and Tounsi, A. (2019), "On exact wave propagation analysis of triclinic material using three dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., Int. J., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487
  28. Kiani, Y., Dimitri, R. and Tornabene, F. (2018), "Free vibration study of composite conical panels reinforced with FG-CNTs", Eng. Struct., 172, 472-482. https://doi.org/10.1016/j.engstruct.2018.06.006
  29. Koizumi, M.F.G.M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
  30. Kolahchi, R. and Moniri, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Mathe. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8
  31. Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9
  32. Levinson, M.A.R.K. (1981), "A new rectangular beam theory", J. Sound Vib., 74(1), 81-87. https://doi.org/10.1016/0022-460X(81)90493-4
  33. Lin, F. and Xiang, Y. (2014), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Mathe. Modell., 38(15-16), 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008
  34. Liu, T., Wriggers, P. and Liu, G. (2012) "A molecular dynamics-continuum concurrent multiscale model for quasi-static nanoscale contact problems", Int. J. Multiscale Computat. Eng., 10(4), 307-326. https://doi.org/10.1615/IntJMultCompEng.2012002133
  35. Mahesh, V. and Harursampath, D. (2020a), "Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01098-5
  36. Mahesh, V. and Harursampath, D. (2020b), "Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading", Mech. Adv. Mater. Struct., 29(7), 1047-1071. https://doi.org/10.1080/15376494.2020.1805059
  37. Mehar, K. and Panda, S.K. (2016), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", Proceedings of IOP Conference Series: Materials Science and Engineering, Vol. 115, No. 1, p. 012014. https://doi.org/10.1088/1757-899X/115/1/012014
  38. Mehar, K. and Panda, S.K. (2018), "Dynamic response of functionally graded carbon nanotube reinforced sandwich plate", Proceedings of IOP Conference Series: Materials Science and Engineering, Vol. 338, No. 1, p. 012017. https://doi.org/10.1088/1757-899X/338/1/012017
  39. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181
  40. Mellouli, H., Jrad, H., Wali, M. and Dammak, F. (2020), "Free vibration analysis of FG-CNTRC shell structures using the meshfree radial point interpolation method", Comput. Mathe. Applicat., 79(11), 3160-3178. https://doi.org/10.1016/j.camwa.2020.01.015
  41. Mohammadimehr, M. and Alimirzaei, S. (2017), "Buckling and free vibration analysis of tapered FG-CNTRC micro Reddy beam under longitudinal magnetic field using FEM", Smart Struct. Syst., Int. J., 19(3), 309-322. https://doi.org/10.12989/sss.2017.19.3.309
  42. Reissner, E. (1945), "The effect of transverse shears deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77.
  43. Rostami, R., Rahaghi, M.I. and Mohammadimehr, M. (2020), "Nonlinear forced vibration of sandwich plate with considering FG core and CNTs reinforced nano-composite face sheets", Smart Struct. Syst., Int. J., 26(2), 185-193. http://doi.org/10.12989/sss.2020.26.2.185
  44. Shahrbabaki, E.A. and Alibeigloo, A. (2014), "Three-dimensional free vibration of carbon nanotube-reinforced composite plates with various boundary conditions using Ritz method", Compos. Struct., 111, 362-370. https://doi.org/10.1016/j.compstruct.2014.01.013
  45. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  46. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
  47. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135
  48. Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
  49. Wali, M., Hentati, T., Jarraya, A. and Dammak, F. (2015), "Free vibration analysis of FGM shell structures with a discrete double directors shell element", Compos. Struct., 125, 295-303. https://doi.org/10.1016/J.COMPSTRUCT.2015.02.032
  50. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling, and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Computat. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
  51. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessels Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
  52. Zghal, S. and Dammak, F. (2020), "Vibrational behavior of beams made of functionally graded materials by using a mixed formulation", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(18), 3650-36660. https://doi.org/10.1177/0954406220916533
  53. Zghal, S., Frikha, A. and Dammak, F. (2018), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures", Appl. Mathe. Modell., 53, 132-155. https://doi.org/10.1016/j.apm.2017.08.021
  54. Zghal, S., Ataoui, D. and Dammak, F. (2021), "Free vibration analysis of porous beams with gradually varying mechanical properties", Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 14750902211047746. https://doi.org/10.1177/14750902211047746
  55. Zghal, S., Ataoui, D. and Dammak, F. (2022), "Static bending analysis of beams made of functionally graded porous materials", Mech. Based Des. Struct. Mach., 50(3), 1012-1029. https://doi.org/10.1080/15397734.2020.1748053
  56. Zhao, J., Choe, K., Shuai, C., Wang, A. and Wang, Q. (2019), "Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions", Compos. Part B: Eng., 160, 225-240. https://doi.org/10.1016/j.compositesb.2018.09.105