참고문헌
- Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal effects on the free vibration behavior of composite plate using nth-order shear deformation theory: a micromechanical approach", Iran. J. Sci. Technol., Transact. Mech. Eng., 43(1), 61-73. https://doi.org/10.1007/s40997-017-0140-y
- Ahmed, H., Mohamed, Z. and Mohamed, S. (2018), "A refined shear deformation plate theory for static and free vibration analysis of functionally graded plates", Ejovoc (Electronic Journal of Vocational Colleges), 8(2), 142-144. Retrieved from: https://dergipark.org.tr/en/pub/ejovoc/issue/41199/497946
- Ajayan, P.M., Stephan, O., Colliex, C. and Trauth, D. (1994), "Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite", Science, 265(5176), 1212-1214. https://doi.org/10.1126/science.265.5176.1212
- Alankaya, V. and Erdonmez, C. (2017), "Bending performance of laminated sandwich shells in hyperbolic paraboloidal form", Steel Compos. Struct., Int. J., 25(3), 337-346. https://doi.org/10.12989/scs.2017.25.3.337
- Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., Int. J., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141
- Arani, A.G., Pourjamshidian, M. and Arefi, M. (2018), "Nonlinear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory", Smart Struct. Syst., Int. J., 22(1), 105-120. https://doi.org/10.12989/sss.2018.22.1.105
- Arefi, M., Bidgoli, E.M.R., Dimitri, R. and Tornabene, F. (2018), "Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Aerosp. Sci. Technol., 81, 108-117. https://doi.org/10.1016/j.ast.2018.07.036
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
- Avcar, M. and Alwan, H.H.A. (2017), "Free vibration of functionally graded Rayleigh beam", Int. J. Eng. Appl. Sci., 9(2), 127-137. https://doi.org/10.24107/ijeas.322884
- Bachtold, A., Hadley, P., Nakanishi, T. and Dekker, C. (2001), "Logic circuits with carbon nanotube transistors", Science, 294(5545), 1317-1320. https://doi.org/10.1126/science.1065824
- Baltacioglu, A.K. and Civalek, O. (2018), "Numerical approaches for vibration response of annular and circular composite plates", Steel Compos. Struct., Int. J., 29(6), 755-766. https://doi.org/10.12989/scs.2018.29.6.759
- Bensattalah, T., Zidour, M., Daouadji, T.H. and Bouakaz, K. (2019), "Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix", Struct. Eng. Mech., Int. J., 70(3), 269-277. https://doi.org/10.12989/sem.2019.70.3.269
- Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/JNanoR.62.108
- Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., Int. J., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517
- Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircr. Spacecr. Sci., Int. J., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001
- Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda-Bedia, E.A. (2014), "Hygrothermal effects on the postbuckling response of composite beams", Am. J. Mater. Res., 1(2), 35-43. https://doi.org/10.12989/scs.2018.27.6.777
- Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda-Bedia, E.A. (2015), "Postbuckling analysis of functionally graded beams using hyperbolic shear deformation theory", Rev. Inform. Eng. Applicat., 2(1), 1-14. https://doi.org/10.18488/journal.79/2015.2.1/79.1.1.14
- Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., Int. J., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209
- Do, Q.C., Pham, D.N., Vu, D.Q., Vu, T.T.A. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., Int. J., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243
- Dresselhaus, M.S. and Avouris, P. (2001), "Introduction to carbon materials research", In: Carbon Nanotubes, pp. 1-9, Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39947-X
- Ebrahimi, F. and Daman, M. (2017), "Nonlocal thermo-electromechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam", Smart Struct. Syst., Int. J., 20(3), 351-368. http://doi.org/10.12989/sss.2017.20.3.351
- Eltaher, M.A., Mohamed, N. and Mohamed, S.A. (2020), "Nonlinear buckling and free vibration of curved CNTs by doublet mechanics", Smart Struct. Syst., Int. J., 26(2), 213-226. https://doi.org/10.12989/sss.2020.26.2.213
- Fariborz, J. and Batra, R.C. (2019), "Free vibration of bidirectional functionally graded material circular beams using shear deformation theory employing logarithmic function of radius", Compos. Struct., 210, 217-230. https://doi.org/10.1016/j.compstruct.2018.11.036
- Farokhian, A. and Kolahchi, R. (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., Int. J., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
- Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099
- Karami, B., Janghorban, M. and Tounsi, A. (2019), "On exact wave propagation analysis of triclinic material using three dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., Int. J., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487
- Kiani, Y., Dimitri, R. and Tornabene, F. (2018), "Free vibration study of composite conical panels reinforced with FG-CNTs", Eng. Struct., 172, 472-482. https://doi.org/10.1016/j.engstruct.2018.06.006
- Koizumi, M.F.G.M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
- Kolahchi, R. and Moniri, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Mathe. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8
- Kolahchi, R., Bidgoli, M.R., Beygipoor, G. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29(9), 3669-3677. https://doi.org/10.1007/s12206-015-0811-9
- Levinson, M.A.R.K. (1981), "A new rectangular beam theory", J. Sound Vib., 74(1), 81-87. https://doi.org/10.1016/0022-460X(81)90493-4
- Lin, F. and Xiang, Y. (2014), "Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories", Appl. Mathe. Modell., 38(15-16), 3741-3754. https://doi.org/10.1016/j.apm.2014.02.008
- Liu, T., Wriggers, P. and Liu, G. (2012) "A molecular dynamics-continuum concurrent multiscale model for quasi-static nanoscale contact problems", Int. J. Multiscale Computat. Eng., 10(4), 307-326. https://doi.org/10.1615/IntJMultCompEng.2012002133
- Mahesh, V. and Harursampath, D. (2020a), "Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01098-5
- Mahesh, V. and Harursampath, D. (2020b), "Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading", Mech. Adv. Mater. Struct., 29(7), 1047-1071. https://doi.org/10.1080/15376494.2020.1805059
- Mehar, K. and Panda, S.K. (2016), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", Proceedings of IOP Conference Series: Materials Science and Engineering, Vol. 115, No. 1, p. 012014. https://doi.org/10.1088/1757-899X/115/1/012014
- Mehar, K. and Panda, S.K. (2018), "Dynamic response of functionally graded carbon nanotube reinforced sandwich plate", Proceedings of IOP Conference Series: Materials Science and Engineering, Vol. 338, No. 1, p. 012017. https://doi.org/10.1088/1757-899X/338/1/012017
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181
- Mellouli, H., Jrad, H., Wali, M. and Dammak, F. (2020), "Free vibration analysis of FG-CNTRC shell structures using the meshfree radial point interpolation method", Comput. Mathe. Applicat., 79(11), 3160-3178. https://doi.org/10.1016/j.camwa.2020.01.015
- Mohammadimehr, M. and Alimirzaei, S. (2017), "Buckling and free vibration analysis of tapered FG-CNTRC micro Reddy beam under longitudinal magnetic field using FEM", Smart Struct. Syst., Int. J., 19(3), 309-322. https://doi.org/10.12989/sss.2017.19.3.309
- Reissner, E. (1945), "The effect of transverse shears deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77.
- Rostami, R., Rahaghi, M.I. and Mohammadimehr, M. (2020), "Nonlinear forced vibration of sandwich plate with considering FG core and CNTs reinforced nano-composite face sheets", Smart Struct. Syst., Int. J., 26(2), 185-193. http://doi.org/10.12989/sss.2020.26.2.185
- Shahrbabaki, E.A. and Alibeigloo, A. (2014), "Three-dimensional free vibration of carbon nanotube-reinforced composite plates with various boundary conditions using Ritz method", Compos. Struct., 111, 362-370. https://doi.org/10.1016/j.compstruct.2014.01.013
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135
- Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
- Wali, M., Hentati, T., Jarraya, A. and Dammak, F. (2015), "Free vibration analysis of FGM shell structures with a discrete double directors shell element", Compos. Struct., 125, 295-303. https://doi.org/10.1016/J.COMPSTRUCT.2015.02.032
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling, and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Computat. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
- Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessels Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
- Zghal, S. and Dammak, F. (2020), "Vibrational behavior of beams made of functionally graded materials by using a mixed formulation", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(18), 3650-36660. https://doi.org/10.1177/0954406220916533
- Zghal, S., Frikha, A. and Dammak, F. (2018), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures", Appl. Mathe. Modell., 53, 132-155. https://doi.org/10.1016/j.apm.2017.08.021
- Zghal, S., Ataoui, D. and Dammak, F. (2021), "Free vibration analysis of porous beams with gradually varying mechanical properties", Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 14750902211047746. https://doi.org/10.1177/14750902211047746
- Zghal, S., Ataoui, D. and Dammak, F. (2022), "Static bending analysis of beams made of functionally graded porous materials", Mech. Based Des. Struct. Mach., 50(3), 1012-1029. https://doi.org/10.1080/15397734.2020.1748053
- Zhao, J., Choe, K., Shuai, C., Wang, A. and Wang, Q. (2019), "Free vibration analysis of functionally graded carbon nanotube reinforced composite truncated conical panels with general boundary conditions", Compos. Part B: Eng., 160, 225-240. https://doi.org/10.1016/j.compositesb.2018.09.105