Acknowledgement
This work was supported by the National Natural Science Foundation of China (Project codes: 51978631). The authors also appreciate Henan Haoze Electronics Co. Ltd for providing the superfine SMA wires, and the help from Mrs. Liping KANG and Mr. Yifei SHI during the experiments.
References
- Airoldi, G., Pozzi, M. and Riva, G. (1996), "The electrical resistance properties of shape memory alloys", MRS Online Proceedings Library. https://doi.org/10.1557/PROC-459-459
- Casciati, S. and Marzi, A. (2010), "Experimental studies on the fatigue life of shape memory alloy bars", Smart Struct. Syst., Int. J., 6(1), 73-85. https://doi.org/10.12989/sss.2010.6.1.073
- Churchill, C.B., Shaw, J.A. and Iadicola, M.A. (2010), Tips and tricks for characterizing shape memory alloy wire: Part 4-thermo-mechanical coupling.
- Cui, D., Song, G. and Li, H. (2010), "Modeling of the electrical resistance of shape memory alloy wires", Smart Mater. Struct., 55019. https://doi.org/10.1088/0964-1726/19/5/055019
- DesRoches, R., McCormick, J. and Delemont, M. (2004), "Cyclic properties of superelastic shape memory alloy wires and bars", J. Struct. Eng., 130(1), 38-46. https://doi.org/10.1061/(asce)0733-9445(2004)130:1(38)
- Dhanalakshmi, K., Umapathy, M., Ezhilarasi, D. and Bandyopadhyay, B. (2011), "Design and implementation of fast output sampling feedback control for shape memory alloy actuated structures", Smart Struct. Syst., Int. J., 8(4), 367-384. https://doi.org/10.12989/sss.2011.8.4.367
- Dolce, M. and Cardone, D. (2001a), "Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite NiTi bars subjected to torsion", Int. J. Mech. Sci., 43(11), 2631-2656. https://doi.org/10.1016/S0020-7403(01)00049-2
- Dolce, M. and Cardone, D. (2001b), "Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension", Int. J. Mech. Sci., 43(11), 2657-2677. https://doi.org/10.1016/S0020-7403(01)00050-9
- Dutta, S.M. and Ghorbel, F.H. (2005), "Differential hysteresis modeling of a shape memory alloy wire actuator", IEEE/ASME Transact. Mechatron., 10(2), 189-197. https://doi.org/10.1109/TMECH.2005.844709
- Fang, C., Zheng, Y., Chen, J., Yam, M.C. and Wang, W. (2019), "Superelastic NiTi SMA cables: Thermal-mechanical behavior, hysteretic modelling and seismic application", Eng. Struct., 183, 533-549. https://doi.org/10.1016/j.engstruct.2019.01.049
- Ikuta, K., Tsukamoto, M. and Hirose, S. (1988), "Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope", Proceedings of 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, April, pp. 427-430.
- Ikuta, K., Tsukamoto, M. and Hirose, S. (1991), "Mathematical model and experimental verification of shape memory alloy for designing micro actuator", IEEE Micro Electro Mech. Syst., 103-108. https://doi.org/10.1109/MEMSYS.1991.114778
- Jain, A.K., Sharma, A.K., Khandekar, S. and Bhattacharya, B. (2020), "Shape Memory Alloy-Based Sensor for Two-Phase Flow Detection", IEEE Sens. J., 20(23), 14209-14217. https://doi.org/10.1109/JSEN.2020.3008191
- Janke, L., Czaderski, C., Motavalli, M. and Ruth, J. (2005), "Applications of shape memory alloys in civil engineering structures - Overview, limits and new ideas", Mater. Struct., 38(5), 578-592. https://doi.org/10.1617/14323
- Lee, S.H. and Kim, S.W. (2020), "Self-sensing-based deflection control of carbon fibre-reinforced polymer (CFRP)-based shape memory alloy hybrid composite beams", Compos. Struct., 251, 112544. https://doi.org/10.1016/j.compstruct.2020.112544
- Lee, H.T., Kim, M.S., Lee, G.Y., Kim, C.S. and Ahn, S.H. (2018), "Shape memory alloy (sma)-based microscale actuators with 60% deformation rate and 1.6 kHz actuation speed", Small, 14(23), 1801023. https://doi.org/10.1002/smll.201801023
- Lee, H.T., Seichepine, F. and Yang, G.Z. (2020), "Microtentacle actuators based on shape memory alloy smart soft composite", Adv. Funct. Mater., 30(34), 2002510. https://doi.org/10.1002/adfm.202002510
- Lester, B.T., Baxevanis, T., Chemisky, Y. and Lagoudas, D.C. (2015), "Review and perspectives: shape memory alloy composite systems", Acta Mech., 226, 3907-3960. https://doi.org/10.1007/s00707-015-1433-0
- Mohan, S. and Banerjee, A. (2021), "Modelling of minor hysteresis loop of shape memory alloy wire actuator and its application in self-sensing", Smart Mater. Struct., 30(5), 055011. https://doi.org/10.1088/1361-665X/abeefa
- Nahm, S.H., Kim, Y.J., Kim, J.M. and Yoon, D.J. (2005), "A study on the application of Ni-Ti shape memory alloy as a sensor", In: Materials Science Forum, Vol. 475, pp. 21043-2046. https://doi.org/10.4028/www.scientific.net/MSF.475-479.2043
- Nakshatharan, S. and Dhanalakshmi, K. (2014), "Differential resistance feedback control of a self-sensing shape memory alloy actuated system", ISA Trans., 53(2), 289-297. https://doi.org/10.1016/j.isatra.2013.11.002
- Novak, V., Sittner, P., Dayananda, G.N., Braz-Fernandes, F.M. and Mahesh, K.K. (2008), "Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: Experiments and simulation", Mater. Sci. Eng.: A, 481, 127-133. https://doi.org/10.1016/j.msea.2007.02.162
- Qian, H., Li, H.N., Song, G.B. and Chen, H. (2011), "Dynamical behavior and constitutive model of superelasticity niti shape memory alloy wire: experiment and theory", J. Solid Mech., 32(04), 353-359. [In Chinese]
- Qian, H., Li, J.B., Li, H.N. and Chen, H. (2013), "Mechanical behavior tests of NiTi wires with different diameters for structural vibration control", J. Vib. Shock, 32(24), 89-95. [In Chinese]
- Sherif, M.M. and Ozbulut, O.E. (2020), "Thermomechanical and electrical response of a superelastic NiTi shape memory alloy cable", J. Intell. Mater. Syst. Struct., 31(19), 2229-2242. https://doi.org/10.1177/1045389X20943952
- Shi, Z., Wang, T. and Da, L. (2014), "Performance analyses of antagonistic shape memory alloy actuators based on recovered strain", Smart Struct. Syst., Int. J., 14(5), 765-784. https://doi.org/10.12989/sss.2014.14.5.765
- Song, G., Mo, Y.L., Otero, K. and Gu, H. (2006), "Health monitoring and rehabilitation of a concrete structure using intelligent materials", Smart Mater. Struct., 15(2), 309-314. https://doi.org/10.1088/0964-1726/15/2/010
- Song, G., Ma, N. and Lee, H.J. (2007), "Position estimation and control of SMA actuators based on electrical resistance measurement", Smart Struct. Syst., Int. J., 3(2), 189-200. https://doi.org/10.12989/sss.2007.3.2.189
- Sreekanth, M., Mathew, A.T. and Vijayakumar, R. (2018), "A novel model-based approach for resistance estimation using rise time and sensorless position control of sub-millimetre shape memory alloy helical spring actuator", J. Intell. Mater. Syst. Struct., 29(6), 1050-1064. https://doi.org/10.1177/1045389X17730911
- Suhail, R., Chen, J.F., Amato, G. and McCrum, D. (2020a), "Mechanical behaviour of NiTiNb shape memory alloy wires-strain localisation and effect of strain rate", Mech. Mater., 144, 103346. https://doi.org/10.1016/j.mechmat.2020.103346
- Suhail, R., Amato, G. and McCrum, D. (2020b), "Heat-activated prestressing of NiTiNb shape memory alloy wires", Eng. Struct., 206, 110128. https://doi.org/10.1016/j.engstruct.2019.110128
- Suhail, R., Amato, G. and McCrum, D. (2021), "Thermo-mechanical characterisation of NiTi-based shape memory alloy wires for civil engineering applications", J. Intell. Mater. Syst. Struct., 32(20), 2420-2436. https://doi.org/10.1177/1045389X211001437
- Zadafiya, K., Kumari, S., Chatterjee, S. and Abhishek, K. (2021), "Recent trends in non-traditional machining of shape memory alloys (SMAs): A review", CIRP J. Manuf. Sci. Technol., 32, 217-227. https://doi.org/10.1016/j.cirpj.2021.01.003
- Zhang, J.J., Yin, Y.H. and Zhu, J.Y. (2013), "Electrical resistivity-based study of self-sensing properties for shape memory alloy-actuated artificial muscle", Sensors, 13(10), 12958-12974. https://doi.org/10.3390/s131012958