참고문헌
- Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201
- Cao, B., Zhao, J., Liu, X., Arabas, J., Tanveer, M., Singh, A.K. and Lv, Z. (2022), "Multiobjective evolution of the explainable fuzzy rough neural network with gene expression programming", IEEE Transact. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2022.3141761
- Chen, Y., Lin, H., Cao, R. and Zhang, C. (2021), "Slope stability analysis considering different contributions of shear strength parameters", Int. J. Geomech., 21(3), 04020265. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001937
- Chopra, P., Sharma, R.K., Kumar, M. and Chopra, T. (2018), "Comparison of machine learning techniques for the prediction of compressive strength of concrete", Adv. Civil Eng., 2018. https://doi.org/10.1155/2018/5481705
- Chou, J.S., Chiu, C.K., Farfoura, M. and Al-Taharwa, I. (2011), "Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques", J. Comput. Civil Eng., 25(3), 242-253. https://doi.org/10.1061/(asce)cp.1943-5487.0000088
- Chou, J.S., Tsai, C.F., Pham, A.D. and Lu, Y.H. (2014), "Machine learning in concrete strength simulations: Multi-nation data analytics", Constr. Build. Mater., 73, 771-780. https://doi.org/10.1016/j.conbuildmat.2014.09.054
- DeRousseau, M.A., Laftchiev, E., Kasprzyk, J.R., Rajagopalan, B. and Srubar III, W.V. (2019), "A comparison of machine learning methods for predicting the compressive strength of field-placed concrete", Constr. Build. Mater., 228, 116661. https://doi.org/10.1016/j.conbuildmat.2019.08.042
- Duan, Q. (1991), "A global optimization strategy for efficient and effective calibration of hydrologic models", Dissertation-Reproduction; The University of Arizona, Tucson, AZ, USA.
- Duan, Q.Y., Gupta, V.K. and Sorooshian, S. (1993), "Shuffled complex evolution approach for effective and efficient global minimization", J. Optimiz. Theory Applicat., 76(3), 501-521. https://doi.org/10.1007/BF00939380
- Duan, J., Asteris, P.G., Nguyen, H., Bui, X.N. and Moayedi, H. (2020), "A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model", Eng. Comput., 37(4), 3329-3346. https://doi.org/10.1007/s00366-020-01003-0
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, Int. J., 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463
- Faris, H., Hassonah, M.A., Al-Zoubi, A.M., Mirjalili, S. and Aljarah, I. (2018), "A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture", Neural Comput. Applicat., 30(8), 2355-2369. https://doi.org/10.1007/s00521-016-2818-2
- Fathy, A. and Rezk, H. (2018), "Multi-verse optimizer for identifying the optimal parameters of PEMFC model", Energy, 143, 634-644. https://doi.org/10.1016/j.energy.2017.11.014
- Feng, J., Chen, B., Sun, W. and Wang, Y. (2021), "Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization", Constr. Build. Mater., 280, 122460. https://doi.org/10.1016/j.conbuildmat.2021.122460
- Gandomi, A.H., Alavi, A.H., Arjmandi, P., Aghaeifar, A. and Seyednour, R. (2010), "Genetic programming and orthogonal least squares: a hybrid approach to modeling the compressive strength of CFRP-confined concrete cylinders", J. Mech. Mater. Struct., 5(5), 735-753. https://doi.org/10.2140/jomms.2010.5.735
- Han, T., Siddique, A., Khayat, K., Huang, J. and Kumar, A. (2020), "An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete", Constr. Build. Mater., 244, 118271. https://doi.org/10.1016/j.conbuildmat.2020.118271
- Henigal, A., Elbeltgai, E., Eldwiny, M. and Serry, M. (2016), "Artificial neural network model for forecasting concrete compressive strength and slump in Egypt", J. Al-Azhar Univ. Eng. Sector, 11(39), 435-446. https://doi.org/10.21608/auej.2016.19445
- Holland, J.H. (1992), Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MIT press.
- Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastr. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768
- Jiang, X. and Li, S. (2017), "BAS: beetle antennae search algorithm for optimization problems", arXiv preprint, arXiv: 1710.10724. https://doi.org/10.5430/ijrc.v1n1p1
- Jiang, X., Lin, Z., He, T., Ma, X., Ma, S. and Li, S. (2020), "Optimal path finding with beetle antennae search algorithm by using ant colony optimization initialization and different searching strategies", IEEE Access, 8, 15459-15471. https://doi.org/10.1109/ACCESS.2020.2965579
- Linh, N.T.T., Pandey, M., Janizadeh, S., Bhunia, G.S., Norouzi, A., Ali, S., Pham, Q.B., Anh, D.T. and Ahmadi, K. (2022), "Flood susceptibility modeling based on new hybrid intelligence model: Optimization of XGboost model using GA metaheuristic algorithm", Adv. Space Res., 69(9), 3301-3318. https://doi.org/10.1016/j.asr.2022.02.027
- Lu, N., Wang, H., Wang, K. and Liu, Y. (2021), "Maximum probabilistic and dynamic traffic load effects on short-to-medium span bridges", Comput. Model. Eng. Sci., 127(1), 345-360. https://doi.org/10.32604/cmes.2021.013792
- Luo, Y., Zheng, H., Zhang, H. and Liu, Y. (2021), "Fatigue reliability evaluation of aging prestressed concrete bridge accounting for stochastic traffic loading and resistance degradation", Adv. Struct. Eng., 24(13), 3021-3029. https://doi.org/10.1177/13694332211017995
- Ly, H.B., Pham, B.T., Dao, D.V., Le, V.M., Le, L.M. and Le, T.T. (2019), "Improvement of ANFIS model for prediction of compressive strength of manufactured sand concrete", Appl. Sci., 9(18), 3841. https://doi.org/10.3390/app9183841
- Ma, X., Foong, L.K., Morasaei, A., Ghabussi, A. and Lyu, Z. (2020), "Swarm-based hybridizations of neural network for predicting the concrete strength", Smart Struct. Syst., Int. J., 26(2), 241-251. https://doi.org/10.12989/sss.2020.26.2.241
- Mak, S.L. and Torii, K. (1995), "Strength development of high strength concretes with and without silica fume under the influence of high hydration temperatures", Cement Concrete Res., 25(8), 1791-1802. https://doi.org/10.1016/0008-8846(95)00175-1
- Mashhadban, H., Kutanaei, S.S. and Sayarinejad, M.A. (2016), "Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network", Constr. Build. Mater., 119, 277-287. https://doi.org/10.1016/j.conbuildmat.2016.05.034
- Mehrabi, M. (2021), "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy", Natural Hazards, 111(1), 901-937. https://doi.org/10.1007/s11069-021-05083-z
- Mehrabi, M. and Moayedi, H. (2021), "Landslide susceptibility mapping using artificial neural network tuned by metaheuristic algorithms", Environ. Earth Sci., 80(24), 1-20. https://doi.org/10.1007/s12665-021-10098-7
- Mehrabi, M., Pradhan, B., Moayedi, H. and Alamri, A. (2020), "Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art metaheuristic techniques", Sensors, 20(6), 1723. https://doi.org/10.3390/s20061723
- Mirjalili, S., Mirjalili, S.M. and Hatamlou, A. (2016), "Multi-verse optimizer: a nature-inspired algorithm for global optimization", Neural Comput. Applicat., 27(2), 495-513. https://doi.org/10.1007/s00521-015-1870-7
- Mirzahosseini, M., Jiao, P., Barri, K., Riding, K.A. and Alavi, A.H. (2019), "New machine learning prediction models for compressive strength of concrete modified with glass cullet", Eng. Computat., 36(3), 876-898. https://doi.org/10.1108/ec-08-2018-0348
- Moayedi, H., Kalantar, B., Foong, L.K., Tien Bui, D. and Motevalli, A. (2019a), "Application of three metaheuristic techniques in simulation of concrete slump", Appl. Sci.-Basel, 9(20), 4340. https://doi.org/10.3390/app9204340
- Moayedi, H., Mehrabi, M., Kalantar, B., Abdullahi Mu'azu, M., A. Rashid, A.S., Foong, L.K. and Nguyen, H. (2019b), "Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial hazard assessment of seismic-induced landslide", Geomat. Natural Hazards Risk, 10(1), 1879-1911. https://doi.org/10.1080/19475705.2019.1650126
- Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019c), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0
- Moayedi, H., Mehrabi, M., Bui, D.T., Pradhan, B. and Foong, L.K. (2020), "Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility", J. Environ. Manage., 260, 109867. https://doi.org/10.1016/j.jenvman.2019.109867
- Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., Int. J., 14(5), 785-809. https://doi.org/10.12989/.2014.14.5.785
- Mohammadhassani, M., Saleh, A., Suhatril, M. and Safa, M. (2015), "Fuzzy modelling approach for shear strength prediction of RC deep beams", Smart Struct. Syst., Int. J., 16(3), 497-519. https://doi.org/10.12989/sss.2015.16.3.497
- Nehdi, M. and Greenough, T. (2007), "Modeling shear capacity of RC slender beams without stirrups using genetic algorithms", Smart Struct. Syst., Int. J., 3(1), 51-68. https://doi.org/10.12989/sss.2007.3.1.051
- Nehdi, M., El Chabib, H. and Said, A. (2006), "Evaluation of shear capacity of FRP reinforced concrete beams using artificial neural networks", Smart Struct. Syst., Int. J., 2(1), 81-100. https://doi.org/10.12989/sss.2006.2.1.081
- Nguyen, K.T., Nguyen, Q.D., Le, T.A., Shin, J. and Lee, K. (2020a), "Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches", Constr. Build. Mater., 247, 118581. https://doi.org/10.1016/j.conbuildmat.2020.118581
- Nguyen, T.A., Ly, H.B., Mai, H.V.T. and Tran, V.Q. (2020b), "Prediction of later-age concrete compressive strength using feedforward neural network", Adv. Mater. Sci. Eng., 2020. https://doi.org/10.1155/2020/9682740
- Onat, O. and Celik, E. (2017), "An integral based fuzzy approach to evaluate waste materials for concrete", Smart Struct. Syst., Int. J., 19(3), 323-333. https://doi.org/10.12989/sss.2017.19.3.323
- Pham, A.D., Hoang, N.D. and Nguyen, Q.T. (2016), "Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression", J. Comput. Civil Eng., 30(3), 06015002. https://doi.org/10.1061/(asce)cp.1943-5487.0000506
- Prayogo, D. (2018), "Metaheuristic-based machine learning system for prediction of compressive strength based on concrete mixture properties and early-age strength test results", Civil Eng. Dimens., 20(1), 21-29. https://doi.org/10.9744/ced.20.1.21-29
- Prayogo, D., Cheng, M.Y., Widjaja, J., Ongkowijoyo, H. and Prayogo, H. (2017), "Prediction of concrete compressive strength from early age test result using an advanced metaheuristic-based machine learning technique", In: ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, Vol. 34.
- Price, W. (1983), "Global optimization by controlled random search", J. Optimiz. Theory Applicat., 40(3), 333-348. https://doi.org/10.1007/BF00933504
- Sadowski, L., Nikoo, M., Shariq, M., Joker, E. and Czarnecki, S. (2019), "The nature-inspired metaheuristic method for predicting the creep strain of green concrete containing ground granulated blast furnace slag", Materials, 12(2), 293. https://doi.org/10.3390/ma12020293
- Sadrmomtazi, A., Sobhani, J. and Mirgozar, M.A. (2013), "Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS", Constr. Build. Mater., 42, 205-216. https://doi.org/10.1016/j.conbuildmat.2013.01.016
- Seong, C., Her, Y. and Benham, B.L. (2015), "Automatic calibration tool for hydrologic simulation program-FORTRAN using a shuffled complex evolution algorithm", Water, 7(2), 503-527. https://doi.org/10.3390/w7020503
- Seyedashraf, O., Mehrabi, M. and Akhtari, A.A. (2018), "Novel approach for dam break flow modeling using computational intelligence", J. Hydrol., 559, 1028-1038. https://doi.org/10.1016/j.jhydrol.2018.03.001
- Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., Int. J., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183
- Shi, T., Lan, Y., Hu, Z., Wang, H., Xu, J. and Zheng, B. (2022), "Tensile and Fracture Properties of Silicon Carbide Whisker-Modified Cement-Based Materials", Int. J. Concrete Struct. Mater., 16(1), 1-13. https://doi.org/10.1186/s40069-021-00495-4
- Sun, L., Koopialipoor, M., Jahed Armaghani, D., Tarinejad, R. and Tahir, M.M. (2019a), "Applying a meta-heuristic algorithm to predict and optimize compressive strength of concrete samples", Eng. Comput., 37(2), 1133-1145. https://doi.org/10.1007/s00366-019-00875-1
- Sun, Y., Zhang, J., Li, G., Wang, Y., Sun, J. and Jiang, C. (2019b), "Optimized neural network using beetle antennae search for predicting the unconfined compressive strength of jet grouting coalcretes", Int. J. Numer. Anal. Methods Geomech., 43(4), 801-813. https://doi.org/10.1002/nag.2891
- Tegmark, M. (2003), "Parallel universes", Sci. Am., 288(5), 40-51. https://doi.org/10.1038/scientificamerican0503-40
- Tien Bui, D., Abdullahi, M.A.M., Ghareh, S., Moayedi, H. and Nguyen, H. (2019), "Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 37(1), 701-712. https://doi.org/10.1007/s00366-019-00850-w
- Wu, Q., Ma, Z., Xu, G., Li, S. and Chen, D. (2019), "A novel neural network classifier using beetle antennae search algorithm for pattern classification", IEEE access, 7, 64686-64696. https://doi.org/10.1109/ACCESS.2019.2917526
- Xie, S.J., Lin, H., Chen, Y.F. and Wang, Y.X. (2021), "A new nonlinear empirical strength criterion for rocks under conventional triaxial compression", J. Central South Univ., 28(5), 1448-1458. https://doi.org/10.1007/s11771-021-4708-8
- Xu, H., Wang, X.Y., Liu, C.N., Chen, J.N. and Zhang, C. (2021), "A 3D root system morphological and mechanical model based on L-Systems and its application to estimate the shear strength of root-soil composites", Soil Tillage Res., 212, 105074. https://doi.org/10.1016/j.still.2021.105074
- Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
- Yeh, I.C. (2006), "Analysis of strength of concrete using design of experiments and neural networks", J. Mater. Civil Eng., 18(4), 597-604. https://doi.org/10.1061/(asce)0899-1561(2006)18:4(597)
- Young, B.A., Hall, A., Pilon, L., Gupta, P. and Sant, G. (2019), "Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods", Cement Concrete Res., 115, 379-388. https://doi.org/10.1016/j.cemconres.2018.09.006
- Yuan, Q., Shi, C., De Schutter, G., Audenaert, K. and Deng, D. (2009), "Chloride binding of cement-based materials subjected to external chloride environment-a review", Constr. Build. Mater., 23(1), 1-13. https://doi.org/10.1016/j.conbuildmat.2008.02.004
- Zhang, C. and Abedini, M. (2022), "Development of PI model for FRP composite retrofitted RC columns subjected to high strain rate loads using LBE function", Eng. Struct., 252, 113580. https://doi.org/10.1016/j.engstruct.2021.113580
- Zhang, W. and Tang, Z. (2021), "Numerical modeling of response of CFRP-Concrete interfaces subjected to fatigue loading", J. Compos. Constr., 25(5), 04021043. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001154
- Zhang, Y., Li, S. and Xu, B. (2021), "Convergence analysis of beetle antennae search algorithm and its applications", Soft Comput., 25(16), 10595-10608. https://doi.org/10.1007/s00500-021-05991-z