Acknowledgement
This research was supported by a grant from R&D program(PK2203F1) of the Korea Railroad Research Institute.
References
- Zhang, X., Green, T.C.: The modular multilevel converter for high step-up ratio DC-DC conversion. IEEE Trans. Ind. Electron. 62(8), 4925-4936 (2015) https://doi.org/10.1109/TIE.2015.2393846
- Denniston, N., Massoud, A.M., Ahmed, S., Enjeti, P.N.: Multiple-module high-gain high-voltage DC-DC transformers for offshore wind energy systems. IEEE Trans. Ind. Electron. 58(5), 1877-1886 (2011) https://doi.org/10.1109/TIE.2010.2053340
- Cao, L., Loo, K.H., Lai, Y.M.: Output-impedance shaping of bidirectional DAB DC-DC converter using double-proportional-integral feedback for near-ripple-free DC bus voltage regulation in renewable energy systems. IEEE Trans. Power Electron. 31(3), 2187-2199 (2016) https://doi.org/10.1109/TPEL.2015.2433535
- He, P., Khaligh, A.: Comprehensive analyses and comparison of 1 KW Isolated DC-DC Converters for Bidirectional EV Charging Systems. IEEE Trans. Transp. Electrif. 3(1), 147-156 (2017) https://doi.org/10.1109/TTE.2016.2630927
- Song, W., Zhong, M., Luo, S., Yang, S.: Model predictive power control for bidirectional series-resonant isolated DC-DC converters with fast dynamic response in locomotive traction system. IEEE Trans. Transp. Electrif. 6(3), 1326-1337 (2020) https://doi.org/10.1109/tte.2020.3006135
- Zeng, J., Qiao, W., Qu, L.: An isolated three-port bidirectional DC-DC converter for photovoltaic systems with energy storage. IEEE Trans. Ind. Appl. 51(4), 3493-3503 (2015) https://doi.org/10.1109/TIA.2015.2399613
- Su, G.J., Tang, L.: A multiphase, modular, bidirectional, triple-voltage DC-DC converter for hybrid and fuel cell vehicle power systems. IEEE Trans. Power Electron. 23(6), 3035-3046 (2008) https://doi.org/10.1109/TPEL.2008.2005386
- Khan, M.A., Ahmed, A., Husain, I., Sozer, Y., Badawy, M.: Performance analysis of bidirectional DC-DC converters for electric vehicles. IEEE Trans. Ind. Appl. 51(4), 3442-3452 (2015) https://doi.org/10.1109/TIA.2015.2388862
- Grbovic, P.J., Delarue, P., Le Moigne, P., Bartholomeus, P.: A bidirectional three-level DC-DC converter for the ultracapacitor applications. IEEE Trans. Ind. Electron. 57(10), 3415-3430 (2010) https://doi.org/10.1109/TIE.2009.2038338
- Wang, J., Wu, H., Yang, T., Zhang, L., Xing, Y.: Bidirectional three-phase DC-AC converter with embedded DC-DC converter and carrier-based PWM strategy for wide voltage range applications IEEE Trans. Ind. Electron. 66(6), 4144-4155 (2019) https://doi.org/10.1109/tie.2018.2866080
- Corradini, L., Seltzer, D., Bloomquist, D., Zane, R., Maksimovic, D., Jacobson, B.: Minimum current operation of bidirectional dual-bridge series resonant DC/DC converters. IEEE Trans. Power Electron. 27(7), 4144-4155 (2012)
- Li, X., Bhat, A.K.S.: Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC Converter. IEEE Trans. Power Electron. 25(4), 850-862 (2010) https://doi.org/10.1109/TPEL.2009.2034662
- Corradini, L., Seltzer, D., Bloomquist, D., Zane, R., Maksimovic, D., Jacobson, B.: Zero voltage switching technique for bidirectional DC/DC converters. IEEE Trans. Power Electron. 29(4), 1585-1594 (2014) https://doi.org/10.1109/TPEL.2013.2265019
- Wu, J., Li, Y., Sun, X., Liu, F.: A new dual-bridge series resonant DC-DC converter with dual tank. IEEE Trans. Power Electron. 33(5), 3884-3897 (2018)
- Wu, J., Wen, P., Sun, X., Yan, X.: Reactive power optimization control for bidirectional dual-tank resonant DC-DC converters for fuel cells systems. IEEE Trans. Power Electron. 35(9), 9202-9214 (2020) https://doi.org/10.1109/tpel.2020.2971733
- Pan, Y., et al.: A dual-loop control to ensure fast and stable fault-tolerant operation of series resonant DAB converters. IEEE Trans. Power Electron. 35(10), 10994-11012 (2020) https://doi.org/10.1109/tpel.2020.2975348
- Kenzelmann, S., Rufer, A., Dujic, D., Canales, F., De Novaes, Y.R.: Isolated DC/DC structure based on modular multilevel converter. IEEE Trans. Power Electron. 30(1), 89-98 (2015) https://doi.org/10.1109/TPEL.2014.2305976
- Grbovic, P.J.: Master/slave control of input-series- and output-parallel-connected converters: concept for low-cost high-voltage auxiliary power supplies. IEEE Trans. Power Electron. 24(2), 316-328 (2009) https://doi.org/10.1109/TPEL.2008.2006975
- Mazumder, S.K., Tahir, M., Acharya, K.: Master-slave current-sharing control of a parallel DC-DC converter system over an RF communication interface. IEEE Trans. Ind. Electron. 55(1), 59-66 (2008) https://doi.org/10.1109/TIE.2007.896138
- Chen, H.C., Lu, C.Y., Rout, U.S.: Decoupled master-slave current balancing control for three-phase interleaved boost converters. IEEE Trans. Power Electron. 33(5), 3683-3687 (2018) https://doi.org/10.1109/tpel.2017.2760887
- Hao, Z., Li, X., Cao, X., Gan, Y., Yu, Q., Zhang, Q.: A cross-coupled control strategy of phase difference for electric vibration damping actuator. IEEE Access 8, 213887-213898 (2020) https://doi.org/10.1109/ACCESS.2020.3038952
- Zhu, C., Tu, Q., Jiang, C., Pan, M., Huang, H.: A cross coupling control strategy for dual-motor speed synchronous system based on second order global fast terminal sliding mode control. IEEE Access 8, 217967-217976 (2020) https://doi.org/10.1109/ACCESS.2020.3042256
- Anibal Valenzuela, M., Lorenz, R.D.: Electronic line-shafting control for paper machine drives. IEEE Trans. Ind. Appl. 37(1), 158-164 (2001) https://doi.org/10.1109/28.903141
- Anderson, R.G., Meyer, A.J., Valenzuela, M.A., Lorenz, R.D.: Web machine coordinated motion control via electronic line-shafting. IEEE Trans. Ind. Appl. 37(1), 247-254 (2001) https://doi.org/10.1109/28.903157
- Geng, Q., Liu, W., Wang, H., Zhou, Z., Zhang, G.: An improved electronic line shafting control for multimotor drive system based on sliding mode observer. Math. Probl. Eng. (2019). https://doi.org/10.1155/2019/7064141
- Lee, S., Lee, S.H.: Dq synchronous reference frame model of a series-series tuned inductive power transfer system. IEEE Trans. Ind. Electron. 67(12), 10325-10334 (2020) https://doi.org/10.1109/tie.2019.2958307
- Cui, S., Kim, S., Jung, J.J., Sul, S.K.: A comprehensive cell capacitor energy control strategy of a modular multilevel converter (MMC) without a stif DC bus voltage source. IEEE Appl Power Electron (2014). https://doi.org/10.1109/APEC.2014.6803370
- Blasko, V., Kaura, V., Niewiadomski, W.: Sampling of discontinuous voltage and current signals in electrical drives: a system approach. IEEE Trans. Ind. Appl. 34(5), 1123-1130 (1998) https://doi.org/10.1109/28.720453