Acknowledgement
This work is supported by the Ministry of Higher Education and Scientific Research of Algeria as part of a research project (PRFU No, A01L07UN240120200002). The authors would like to thank Dr. Khalil Tamersit for his valuable assistance.
References
- Van-Tung, P., Hong-Hee, L., Tae-Won, C.: An effective rotor current controller for unbalanced stand-alone DFIG systems in the rotor reference frame. J. Power Electron. 10(6), 724-732 (2010). https://doi.org/10.6113/JPE.2010.10.6.724
- Yun-Seong, K., Aditya, M., Dong-Jun, W.: Comparison of various methods to mitigate the flicker level of DFIG in considering the effect of grid conditions. J. Power Electron. 9(4), 612-622 (2009). https://doi.org/10.6113/JPE.2009.9.4.612
- Abad, G., Lopez, J., Rodriguez, M.A., Marroyo, L., Iwanski, G.: Doubly fed induction machine: modeling and control for wind energy generation, New Jersey, United States (2011)
- Heng, N., Chenwen, C., Yipeng, S.: Coordinated control of DFIG system based on repetitive control strategy under generalized harmonic grid voltages. J. Power Electron. 17(3), 733-743 (2017). https://doi.org/10.6113/JPE.2019.17.3.733
- Najib, E., Aziz, D., Abdelaziz, E., Mohammed, T., Youness, E., Khalid, M., Badre, B.: Direct torque control of doubly fed induction motor using three-level NPC inverter. Protect. Control Mod. Power Syst. 17(4), 1-9 (2019). https://doi.org/10.1186/s41601-019-0131-7
- Amrane, F., Chaiba, A., Babes, B., Mekhilef, S.: Design and implementation of high performance field oriented control for grid-connected doubly fed induction generator via hysteresis rotor current controller. Rev. Roum. Sci. Tech. Electrotech. Et. Energy 61(4), 319-324 (2016)
- Sung-Tak, J., Sol-Bin, L., Yong-Bae, P., Kyo-Beum, L.: Direct power control of a DFIG in wind turbines to improve dynamic responses. J. Power Electron. 9(5), 781-790 (2009). https://doi.org/10.6113/JPE.2009.9.5.781
- Djeriri, Y.: Lyapunov-based robust power controllers for a doubly fed induction generator. IJEEE 16(4), 551-558 (2020). https://doi.org/10.22068/IJEEE.16.4.551
- Alhato, M., Ibrahim, M., Rezk, H., Bouallegue, S.: An enhanced dc-link voltage response for wind-driven doubly fed induction generator using adaptive fuzzy extended state observer and sliding mode control. Mathematics 9(9), 1-18 (2021). https://doi.org/10.3390/math9090963
- Djilali, L., Sanchez, E., Belkheiri, M.: Neural sliding mode field oriented control for DFIG based wind turbine. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2087-2092 (2017)
- Evangelista, C., Valenciaga, F., Puleston, P.: Active and reactive power control for wind turbine based on a MIMO 2-sliding mode algorithm with variable gains. IEEE Trans. Energy Convers. 28(3), 682-689 (2013). https://doi.org/10.1109/TEC.2013.2272244
- Djilali, L., Badillo-Olvera, A., Yuliana Rios, Y., Lopez-Beltran, H., Saihi, L.: Neural high order sliding mode control for doubly fed induction generator based wind turbines. IEEE Lat. Am. Trans. 20(2), 223-232 (2022). https://doi.org/10.1109/TLA.2022.9661461
- Tamaarat, A., Benakcha, A.: Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connected variable speed wind energy conversion system. Front. Energy. 8(3), 371-378 (2014). https://doi.org/10.1007/s11708-014-0318-6
- Yamamoto, M., Motoyoshi, O.: Active and reactive power control for doubly-fed wound rotor induction generator. IEEE Trans. Power Electron. 6(4), 624-629 (1991). https://doi.org/10.1109/63.97761
- Sabanovic, A.: Variable structure systems with sliding modes in motion control-a aurvey. IEEE Trans. Ind. Inf. 7(2), 212-223 (2011). https://doi.org/10.1109/TII.2011.2123907
- Utkin, V., Guldner, J., Shi, J. (2009) Sliding Mode Control in Electro-Mechanical Systems, vol. 34. CRC Press, Boca Raton. https://doi.org/10.1201/9781420065619
- Shang, L., Hu, J.: Sliding-mode-based direct power control of grid-connected wind-turbine-driven doubly fed induction generators under unbalanced grid voltage vonditions. IEEE Trans. Energy Convers. 27(2), 362-373 (2012). https://doi.org/10.1109/TEC.2011.2180389
- Merabet, A., Ahmed, K.T., Ibrahim, H., Beguenane, R.: Implementation of sliding mode control system for generator and grid sides control of wind energy conversion system. IEEE Trans. Sustain. Energy. 7(3), 1-9 (2016). https://doi.org/10.1109/TSTE.2016.2537646
- Utkin, V., Lee, H.: Chattering problem in sliding mode control systems. IFAC Proc. 39(5), 1 (2006). https://doi.org/10.3182/20060607-3-it-3902.00003
- Kelkoul, B., Boumediene, A.: Stability analysis and study between classical sliding mode control (SMC) and super twisting algorithm (STA) for doubly fed induction generator (DFIG) under wind turbine. Energy (2021). https://doi.org/10.1016/j.energy.2020.118871
- Adel, M., Ahmed, Al., Mahdi, D., Aman, A., Hisham, E.: Integral sliding mode control for back-to-back converter of DFIG wind turbine system. J. Eng. 2020(10), 834-842 (2020). https://doi.org/10.1049/joe.2020.0113
- Liu, Y., Zhijie, W., Linyun, X., Jie, W., Xiuchen, J.: DFIG wind turbine sliding mode control with exponential reaching law under variable wind speed. Int. J. Electr. Power Energy Syst. 96, 253-260 (2018). https://doi.org/10.1016/j.ijepes.2017.10.018
- Junejo, A.K., Xu, W., Mu, C., Ismail, M.M., Liu, Y.: Adaptive speed control of PMSM drive system based a new sliding-mode reaching law. IEEE Trans. Power Electron. 35(11), 12110-12121 (2020). https://doi.org/10.1109/TPEL.2020.2986893
- Saghafnia, A., Ping, H.W., Uddin, M.N., Gaeid, K.S.: Adaptive fuzzy sliding-mode control into chattering-free im drive. IEEE Trans. Ind. Appl. 51(1), 692-701 (2015). https://doi.org/10.1109/TIA.2014.2328711
- Orlowska-Kowalska, T., Kaminski, M., Szabat, K.: Implementation of a sliding-mode controller with an integral function and fuzzy gain value for the electrical drive with an elastic joint. IEEE Trans. Ind. Electron. 57(4), 1309-1317 (2010). https://doi.org/10.1109/tie.2009.2030823
- Bounar, N., Labdai, S., Boulkroune, A.: PSO-GSA based fuzzy sliding mode controller for DFIG-based wind turbine. ISA Trans. 85, 177-188 (2019). https://doi.org/10.1016/j.isatra.2018.10.020
- Ur Rehman, A., Ali, N., Khan, O., Pervaiz, M.: A disturbance observer based sliding mode control for variable speed wind turbine. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1676661
- Xiahou, K., Liu, Y., Wang, L., Li, M.S., Wu, Q.H.: Control of DFIG's rotor-side converter with decoupling of current loops using observer-based fractional-order sliding-mode regulators. IEEE Access. 7, 163412-1634220 (2019). https://doi.org/10.1109/ACCESS.2019.2952589
- Sami, I., Ullah, S., Ali, Z., Ullah, N., Ro, J.-S.: A super twisting fractional order terminal sliding mode control for DFIG-based wind energy conversion system. Energies 13(9), 1-20 (2020). https://doi.org/10.3390/en13092158
- Bouyekni, A., Taleb, R., Boudjema, Z., Kahal, H.: A second-order continuous sliding mode based on DPC for wind-turbine-driven DFIG. Elektrotehniski Vestnik. 25(1-2), 29-36 (2018)
- Tria, F.Z., Srairi, K., Benchouia, M.T., Benbouzid, M.E.H.: An integral sliding mode controller with super-twisting algorithm for direct power control of wind generator based on a doubly fed induction generator. Int. J. Syst. Assur. Eng. Manag. 8(4), 762-769 (2017). https://doi.org/10.1007/s13198-017-0597-5
- Benbouhenni, H., Boudjema, Z., Belaidi, A.: DPC based on ANFIS super-twisting sliding mode algorithm of a doubly-fed induction generator for wind energy system. Journal Europeen des Systemes Automatises 53(1), 69-80 (2019). https://doi.org/10.18280/jesa.530109
- Sadeghi, R., Madani, S.M., Ataei, M., Agha Kashkooli, M.R., Ademi, S.: Super-twisting sliding mode direct power control of a brushless doubly fed induction generator. IEEE Trans. Ind. Electron. 65(11), 9147-9156 (2018). https://doi.org/10.1109/TIE.2018.2818672
- Benbouhenni, H., Bizon, N.: A synergetic sliding mode controller applied to direct field-oriented control of induction generator-based variable speed dual-Rotor wind turbines. Energies 14(15), 1-17 (2021). https://doi.org/10.3390/en14154437
- Benbouhenni, H., Bizon, N.: Improved rotor flux and torque control based on the third-order sliding mode scheme applied to the asynchronous generator for the single-rotor wind turbine. Mathematics 9(18), 1-16 (2021). https://doi.org/10.3390/math9182297
- Benbouhenni, H., Bizon, N.: Terminal synergetic control for direct active and reactive powers in asynchronous generator-based dual-rotor wind power systems. Electronics 10(16), 1-23 (2021). https://doi.org/10.3390/electronics10161880
- Chen, H., Xie, W., Chen, X., Han, J., Ait-Ahmed, N., Zhou, Z., Tang, T., Benbouzid, M.: Fractional-order PI control of DFIG-based tidal stream Turbine. J. Mar. Sci. Eng. 8(5), 1-23 (2020). https://doi.org/10.3390/jmse8050309
- Mosaad, M.I., Abu-Siada, A., El-Naggar, M.F.: Application of superconductors to improve the performance of DFIG-based WECS. IEEE Access. 7, 103760-103769 (2019). https://doi.org/10.1109/ACCESS.2019.2929261
- Ali, Y., Nusret, T., Atherton, D.P.: Fractional order PI pontroller design for time delay systems. IFAC-PapersOnLine. 49(10), 94-99 (2016). https://doi.org/10.1016/j.ifacol.2016.07.487
- Afghoul, H., Chikouche, D., Krim, F., Babes, B., Beddar, A.: Implementation of fractional-order integral-plus-proportional controller to enhance the power quality of an electrical grid. Electr. Power Compon. Syst. 44(9), 1018-1028 (2016). https://doi.org/10.1080/15325008.2016.1147509
- Benbouhenni, H., Bizon, N.: Third-order sliding mode applied to the direct field-oriented control of the asynchronous generator for variable-speed contra-rotating wind turbine generation systems. Energies 14(18), 1-20 (2021). https://doi.org/10.3390/en14185877
- Benbouhenni, H., Bizon, N.: Advanced direct vector control method for optimizing the operation of a double-powered induction generator-based dual-rotor wind turbine system. Mathematics. 9(19), 1-36 (2021). https://doi.org/10.3390/math9192403
- Habib, B.: Sliding mode with neural network regulateur for DFIG using two-level NPWM strategy. Iran. J. Electr. Electron. Eng. 15(3), 411-419 (2019)
- Edet, E., Katebi, R.: On fractional predictive PID controller design method. IFAC-Pap. Online. 50(1), 8555-8560 (2017). https://doi.org/10.1016/j.ifacol.2017.08.1416
- Pradhan, R., Majhi, S.K., Pradhan, J.K., Pati, B.B.: Optimal fractional order PID controller design using Ant Lion Optimizer. Ain Shams Eng. J. 11(2), 281-291 (2020). https://doi.org/10.1016/j.asej.2019.10.005
- Oussama, M., Abdelghani, C., Lakhdar, C.: Fractional order PID design for MPPT-Pitch angle control of wind turbine using bat algorithm. Adv. Model. Anal. A 56(2), 35-42 (2019). https://doi.org/10.18280/ama_a.562-402
- Hamouda, N., Babes, B., Boutaghane, A., Kahla, S., Mezaache, M.: Optimal tuning of PIλDμ controller for PMDC motor speed control using ant colony optimization algorithm for enhancing robustness of WFSs. In: 1st International Conference on Communications, Control Systems and Signal Processing (2020). https://doi.org/10.1109/CCSSP49278.2020.9151609
- Hamouda, N., Babes, B., Hamouda, C., Kahla, S., Ellinger, T., Petzoldt, J.: Optimal tuning of fractional order proportional-integral-derivative controller for wire feeder system using ant colony optimization. J. Eur. des Syst. Autom. 53(2), 157-166 (2020). https://doi.org/10.18280/jesa.530201
- Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95-International Conference on Neural Networks, pp 1942-1948 (1995). https://doi.org/10.1109/icnn.1995.488968
- Laina, R., Ez-Zahra Lamzouri, F., Boufounas, E.M., El Amrani, A., Boumhidi, I.: Intelligent control of a DFIG wind turbine using a PSO evolutionary algorithm. Procedia Comput. Sci. 127, 471-480 (2018). https://doi.org/10.1016/j.procs.2018.01.145
- Boudjehem, D., Boudjehem, B.: Improved heterogeneous particle swarm optimization. J. Inf. Optim. Sci. 38(3-4), 481-499 (2017). https://doi.org/10.1080/02522667.2016.1224467
- Sai Rayala, S., Ashok Kumar, N.: Particle swarm optimization for robot target tracking application. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.05.660
- Yaichi, I., Semmah, A., Wira, P., Djeriri, Y.: Super-twisting sliding mode control of a doubly-fed induction generator based on the SVM strategy. Period. Polytech. Electr. Eng. Comput. Sci. 63(3), 178-190 (2019). https://doi.org/10.3311/PPee.13726
- Mahfoud, S., Derouich, A., Iqbal, A., El Ouanjli, N.: Ant-colony optimization-direct torque control for a doubly fed induction motor: an experimental validation. Energy Rep. 8, 81-98 (2022). https://doi.org/10.1016/j.egyr.2021.11.239
- Ayrira, W., Ourahoua, M., El Hassounia, B., Haddib, A.: Direct torque control improvement of a variable speed DFIG based on a fuzzy inference system. Math. Comput. Simul. 167, 308-324 (2020). https://doi.org/10.1016/j.matcom.2018.05.014
- Boudjema, Z., Meroufel, A., Djerriri, Y., Bounadja, E.: Fuzzy sliding mode control of a doubly fed induction generator for energy conversion. Carpath. J. Electron. Comput. Eng. 6(2), 7-14 (2013)
- Beniss, M.A., El Moussaoui, H., Lamhamdi, T., El Markhi, H.: Improvement of power quality injected into the grid by using a FOSMC-DPC for doubly fed induction generator. Int. J. Intell. Eng. Syst. 14(2), 556-567 (2021). https://doi.org/10.22266/ijies2021.043050
- Quan, Y., Hang, L., He, Y., Zhang, Y.: Multi-resonant-based sliding mode control of DFIG-based wind system under unbalanced and harmonic network conditions. Appl. Sci. (2019). https://doi.org/10.3390/app9061124
- Boulaam, K., Mekhilef, A.: Output power control of a variable wind energy conversion system. Rev. Sci. Tech. Electrotech. Et. Energ. 62(2), 197-202 (2017)
- Zeghdi, Z., Barazane, L., Bekakra, Y., Larbi, A.: Improved backstepping control of a DFIG based wind energy conversion system using ant lion optimizer algorithm. Period. Polytech. Electr. Eng. Comput. Sci. 66(1), 43-59 (2022). https://doi.org/10.3311//PPee.18716
- El Ouanjli, N., Motahhir, S., Derouich, A., El Ghzizal, A., Chebabhi, A., Taoussi, M.: Improved DTC strategy of doubly fed induction motor using fuzzy logic controller. Energy Rep. 5, 271-279 (2019). https://doi.org/10.1016/j.egyr.2019.02.001
- El Ouanjli, N., Aziz, D., El Ghzizal, A., Mohammed, T., Youness, E., Khalid, M., Badre, B.: Direct torque control of doubly fed induction motor using three-level NPC inverter. Protect. Control Mod. Power Syst. 17(4), 1-9 (2019). https://doi.org/10.1186/s41601-019-0131-7
- Boudjema, Z., Taleb, R., Djerriri, Y., Yahdou, A.: A novel direct torque control using second order continuous sliding mode of a doubly fed induction generator for a wind energy conversion system. Turk. J. Electr. Eng. Comput. Sci. 25(2), 965-975 (2017). https://doi.org/10.3906/elk-1510-89
- Yahdou, A., Hemici, B., Boudjema, Z.: Second order sliding mode control of a dual-rotor wind turbine system by employing a matrix converter. J. Electr. Eng. 16(3), 1-11 (2016)
- Yusof, N.A., Razali, A.M., Karim, K.A., Sutikno, T., Jidin, A.: A Concept of virtual-flux direct power control of three-phase AC-DC converter. Int. J. Power Electron. Drive Syst. 8(4), 1776-1784 (2017). https://doi.org/10.11591/ijpeds.v8i4.pp1776-1784
- Hamid, C., Aziz, D., Seif Eddine, C., Othmane, Z., Mohammed, T., Hasnae, E.: Integral sliding mode control for DFIG based WECS with MPPT based on artificial neural network under a real wind profile. Energy Rep. 7, 4809-4824 (2021). https://doi.org/10.1016/j.egyr.2021.07.066