Acknowledgement
본 논문은 2022년 정부(국토교통부)의 재원으로 국토교통과학기술진흥원(KAIA)의 지원을 받아 연구가 수행된 연구임(22TLRP-B152767-04, 자율협력주행 도로교통체계 통합보안시스템 운영을 위한 기술 및 제도개발)
References
- "2021 국가정보보호백서", KISA, 2021.5
- Capgemini Research Institute(2019), 'Reinventing Cybersecurity with Artificial Intelligence: The new frontier in digital security', 11 July 2019.
- Cisco(2019), 2019 연례 사이버보안 보고서.
- Barnard, Pieter & Marchetti, Nicola & Silva, Luiz. (2022). Robust Network Intrusion Detection through Explainable Artificial Intelligence (XAI). IEEE Networking Letters. 1-1. 10.1109/LNET. 2022.3186589.
- D. Gunning and D. Aha, "DARPA's Explainable Artificial Intelligence (XAI) Program", AIMag, vol. 40, no. 2, pp. 44-58, Jun. 2019. https://doi.org/10.1609/aimag.v40i2.2850
- Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., & Chen, K. (2015). Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4), 1-4.
- D. Fryer, I. Strumke and H. Nguyen, "Shapley Values for Feature Selection: The Good, the Bad, and the Axioms," in IEEE Access, vol. 9, pp. 144352-144360, 2021, doi: 10.1109/ACCESS.2021.3119110.
- Ke, Guolin, et al. "Lightgbm: A highly efficient gradient boosting decision tree." Advances in neural information processing systems 30 (2017).
- Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features. Advances in neural information processing systems, 31.
- Tjoa, E., & Guan, C. (2020). A survey on explainable artificial intelligence (xai): Toward medical xai. IEEE transactions on neural networks and learning systems, 32(11), 4793-4813. https://doi.org/10.1109/TNNLS.2020.3027314
- Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
- Fisher, A., Rudin, C., & Dominici, F. (2019). All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res., 20(177), 1-81.
- Greenwell, B. M. (2017). pdp: An R package for constructing partial dependence plots. RJ., 9(1), 421.
- Srivastava, Gautam & Jhaveri, Rutvij & Bhattacharya, Sweta & Pandya, Sharnil & Rajeswari, & Reddy, Praveen & Yenduri, Gokul & Hall, Jon & Alazab, Mamoun & Gadekallu, Thippa. (2022). XAI for Cybersecurity: State of the Art, Challenges, Open Issues and Future Directions.
- S. Mane and D. Rao, "Explaining network intrusion detection system using explainable AI framework," 2021, arXiv:2103.07110.
- M. Wang, K. Zheng, Y. Yang, and X. Wang, "An explainable machine learning framework for intrusion detection systems," IEEE Access, vol. 8, pp. 73127-73141, 2020. https://doi.org/10.1109/ACCESS.2020.2988359
- S. Wali and I. Khan. "Explainable AI and Random Forest Based Reliable Intrusion Detection System." Dec. 2021. [Online]. Available: https://www.techrxiv.org/articles/preprint/Explainable_AI_and_Random_Forest_Based_Reliable_Intrusion_Detection_system/17169080.
- Dhanabal, L., & Shantharajah, S. P. (2015). A study on NSL-KDD dataset for intrusion detection system based on classification algorithms. International journal of advanced research in computer and communication engineering, 4(6), 446-452.
- Gopalan, S. S., Ravikumar, D., Linekar, D., Raza, A., & Hasib, M. (2021, March). Balancing approaches towards ML for IDS: a survey for the CSE-CIC IDS dataset. In 2020 International Conference on Communications, Signal Processing, and their Applications (ICCSPA) (pp. 1-6). IEEE.
- Koronacki, J. N. K. J., Matwin, R. L. D. M. S., & Skowron, D. M. A. Knowledge Discovery in Databases: PKDD 2007.
- Visa, S., Ramsay, B., Ralescu, A. L., & Van Der Knaap, E. (2011). Confusion matrix-based feature selection. MAICS, 710(1), 120-127.