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a b s t r a c t

Probabilistic safety assessment is widely used to quantify the risks of nuclear power plants and their
uncertainties. When the lognormal distribution describes the uncertainties of basic events, the uncer-
tainty of the top event in a fault tree is approximated with the sum of lognormal random variables after
minimal cutsets are obtained, and rare-event approximation is applied. As handling complicated analytic
expressions for the sum of lognormal random variables is challenging, several approximation methods,
especially Monte Carlo simulation, are widely used in practice for uncertainty analysis. In this study, a
theoretical approach for analyzing the sum of lognormal random variables using an efficient numerical
integration method is proposed for uncertainty analysis in probability safety assessments. The change of
variables from correlated random variables with a complicated region of integration to independent
random variables with a unit hypercube region of integration is applied to obtain an efficient numerical
integration. The theoretical advantages of the proposed method over other approximation methods are
shown through a benchmark problem. The proposed method provides an accurate and efficient approach
to calculate the uncertainty of the top event in probabilistic safety assessment when the uncertainties of
basic events are described with lognormal random variables.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Uncertainty analysis aims to investigate the uncertainties in
events of interest. In Level 1 probabilistic safety assessment (PSA),
the event of interest corresponds to the top event of a single top
fault tree comprising logic gates and basic events. Uncertainty
analysis primarily focuses on the uncertainty associated with the
occurrence of an event and its probability or frequency, which is
modeled using a random variable with a probability distribution
[1]. In the PSA of nuclear power plants, the uncertainties in the
occurrence probabilities of events are often represented using
lognormal distributions over the past decades [2,3]. The random
variable for the uncertainty of the top event is given as a function of
randomvariables for the uncertainties of basic events [4].When the
basic events are modeled with lognormal random variables, the
failure frequency of the top event in Level 1 PSA, which is typically
the core damage frequency, can be approximated with the sum of
the lognormal random variables.

However, the closed-form probability density function of the
by Elsevier Korea LLC. This is an
sum of lognormal random variables is not known. Thus, several
approximation methods have been developed to estimate the
probability density function of the sum of lognormal random var-
iables. Fenton-Wilkinson's method [5] and Schwartz-Yeh's method
[6] approximated the sum of lognormal random variables to a
single lognormal randomvariable through themethod ofmoments.
Moreover, in Ref. [7], an optimal lognormal approximation based on
the minimax method was implemented using a linear function on
the log probability. The probability density function of the sum of
lognormal random variables was also approximated using ortho-
normal polynomials [8] and the moments of the distribution [9]. By
contrast, Monte Carlo simulation can be used to approximate the
probability density function of a function of random variables using
samples and bins [10]. Among the approximation methods, El-
Shanawany et al. [11] applied Fenton-Wilkinson's method to
perform the uncertainty analysis of a nuclear power plant and
compared the analysis with Monte Carlo simulations. For the un-
certainty analysis in PSA, Monte Carlo simulations have been
widely used.

Even though approximation methods are effective in numerous
cases, these methods have inherent limitations, and hence, the
theoretical approach with analytic expressions has unique and
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incomparable values. A method for finding the analytic expression
of a function of random variables is the Jacobian transformation of
the joint density [12]. In this method, the probability density
function of the sum of lognormal random variables is represented
as the multiple integration of a multivariate lognormal distribution.
However, the integrand function is intricate, requiring numerical
integration. As the number of random variables increases, the nu-
merical integration may present the so-called “curse of dimen-
sionality” problem. Genz [13] proposed an efficient numerical
integration method to compute the cumulative distribution func-
tion of multivariate normal distribution even when the integration
region is not bounded.

This study develops a newmethod to find the uncertainty of the
top event in Level 1 PSA when the uncertainties of basic events are
modeled with lognormal random variables. Even though Monte
Carlo approach is widely used for the uncertainty analysis of Level 1
PSA for nuclear power plants because it is simple and easy to apply,
it only provides a numerical approximation to the probability
density function of the top event in the form of a histogram. The
proposed method relies on the analytic expression for the proba-
bility density function of the top event and the transformation of
variables to facilitate numerical integration. One of most important
advantages of the proposed method over the traditional Monte
Carlo approach is that it provides the theoretical foundation on
which further theoretical development is possible.

The remainder of this paper is organized as follows. Section 2
describes the moments of the joint probability density function
and how the multiple integral with correlated lognormal variables
in a complicated integration region is transformed to that with
independent uniform variables in a unit hypercube integration
region. Section 3 demonstrates the application of the proposed
method using a benchmark example concerning the uncertainty
analysis of a nuclear power plant. A comparison with other
approximation methods, such as the Monte Carlo simulation and
Fenton-Wilkinson's method, is also included. Lastly, Section 4
provides the conclusions of the study.
2. Uncertainty quantification in PSA

In the uncertainty analysis of Level 1 PSA, the single top fault
tree is transformed into a logically equivalent fault tree where the
top event comprises the logical OR of minimal cutsets. Minimal
cutsets are the smallest combinations of basic events leading to the
occurrence of the top event. Because the basic events in a fault tree
are assumed to be independent of each other, the occurrence
probability of a minimal cutset is the product of all the occurrence
probabilities of the basic events included in the minimal cutset, as
follows:

Xi ¼
Yni

j¼1

Bij (1)

where Xi is the random variable for the occurrence probability of
the i-th minimal cutset, Bij is the random variable for the occur-
rence probability of j-th basic event included in the i-th minimal
cutset, and ni is the number of basic events in the i-th minimal
cutset. When the occurrence probabilities of basic events are
modeled with lognormal random variables, the occurrence proba-
bility of a minimal cutset is also a lognormal random variable
because the product of lognormal random variables is given as
another lognormal random variable. In general, the occurrence
probability of a minimal cutset is sufficiently low to apply a rare-
event approximation. Hence, the occurrence probability of the
top event is well approximated with the sum of the occurrence
2085
probabilities of minimal cutsets in various cases, as follows:

T z S ¼
Xn
i¼1

Xi (2)

where T is the top event probability, S is the rare-event approxi-
mation for T, and n is the number ofminimal cutsets considered in S
to approximate T .

Themain idea for the uncertainty analysis when basic events are
given as lognormal random variables is described in Eq. (2). In this
case, the top event frequency of a single top fault tree, typically the
core damage frequency in Level 1 PSA, can be approximated with
the sum of a finite number of high-ranking lognormal random
variables. In other words, the uncertainty in the top event fre-
quency can be described with the probability density function of
the sum of lognormal randomvariables. This is owing to the unique
property of lognormal random variables, i.e., the product of the
lognormal random variables for basic events becomes another
lognormal random variable for a minimal cutset.

However, the lognormal random variables for minimal cutsets
(Xi’s) may be dependent to each other. Thus, some minimal cutsets
may include the same initiating event or basic events. For example,
several high-ranking minimal cutsets may commonly include the
loss of offsite power as the initiating event and the basic events for
the failure of emergency diesel generators. Because high-ranking
minimal cutsets may be dependent to each other, the top event
frequency is given as the sum of correlated lognormal random
variables. To analyze the uncertainty in the top event frequency
when basic events are given with lognormal random variables, we
first consider Eq. (1). Let X1; /;Xn be correlated lognormal random
variables. The joint probability density function for X1; /;Xn is
given as follows:

fXðx1;/; xnÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn

q
jSj12 Qn

i¼1xi
e

�1
2

0@24 lnðx1Þ � m1
«
lnðxnÞ � mn

35T

S�1

24 lnðx1Þ � m1
«
lnðxnÞ � mn

#1A

(3)

where mi’s (i ¼ 1;/;n) and S are the means and covariance matrix
of the logarithm of random variables, respectively.

The means of the logarithm of random variables are obtained
from the first and second moments of random variables. Because
the basic events in a fault tree are assumed to be independent, the
first and second moments of the minimal cutset are the product of
the first and second moments of all the included basic events. The
mean of the logarithm of a minimal cutset is obtained as follows:

mi ¼ ln

0BB@
Qni

j¼1E
�
Bij
�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQni

j¼1E
h
B2ij
ir
1CCA (4)

where mi is the mean of the logarithm of the random variable for
the i-th minimal cutset (Xi).

The covariance between the logarithm of two lognormal
randomvariables, which is an element ofS, can be derived from the
covariance between two lognormal random variables, CovðXi;XkÞ
[14].

Sik ¼CovðlnðXiÞ; lnðXkÞÞ¼ ln
�
CovðXi;XkÞ
E½Xi�E½Xk�

þ1
�

(5)
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The random variables for the basic events included in the
minimal cutsets are classified into three categories. Let PInt be the
product of all the random variables for the basic events included in
both minimal cutsets, that is the intersection of two minimal cut-
sets. Let PXi\Xk

and PXk\Xi
be the products of all random variables for

the basic events included only in Xi and Xk, that is the set difference
of two minimal cutsets, respectively. Then, Xi and Xk are given as
follows:

Xi ¼ PIntPXi\Xk
(6)

Xk ¼ PIntPXk\Xi
(7)

The covariance between Xi and Xk is expressed as follows:

CovðXi;XkÞ¼ E½XiXk� � E½Xi�E½Xk� ¼ E
h
PInt

2PXi\Xk
PXk\Xi

i
� E
�
PIntPXi\Xk

�
E
�
PIntPXk\Xi

�
(8)

The basic events are independent of each other and no basic
event can be included in both PInt, PXi\Xk

, and PXk\Xi
simultaneously.

Hence, PInt, PXi\Xk
, and PXk\Xi

are independent of each other.

E
h
PInt

2PXi\Xk
PXk\Xi

i
¼ E
h
PInt

2
i
E
�
PXi\Xk

�
E
�
PXk\Xi

�
(9)

E
�
PIntPXi\Xk

�
E
�
PIntPXk\Xi

�¼ E½PInt�E
�
PXi\Xk

�
$ E½PInt�E

�
PXk\Xi

�
¼ðE½PInt�Þ2$E

�
PXi\Xk

�
E
�
PXk\Xi

�
(10)

Eq. (8) becomes

CovðXi;XkÞ¼
�
E
h
PInt

2
i
�ðE½PInt�Þ2

�
E
�
PXi\Xk

�
E
�
PXk\Xi

�
¼VarðPIntÞE

�
PXi\Xk

�
E
�
PXk\Xi

�
(11)

Considering Eqs. (4), (5) and (11), the means (mi’s) and covari-
ance matrix (S) of the logarithm of the random variables for the
specified high-rankingminimal cutsets for Eq. (3) can be calculated.

As defined in Eq. (2), let S be the sum of the correlated lognormal
random variables as
fYðy1;/; yn�1; sÞ¼
e

�1
2

0BB@
2664

y1 � m1

«

yn�1 � mn�1

lnðs� ey1 �/� eyn�1Þ � mn

3775
T

S�1

2664
y1 � m1

«

yn�1 � mn�1

lnðs� ey1 �/� eyn�1Þ � mn

3775
1CCA

ffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn

q
jSj12 ðs� ey1 �/� eyn�1Þ

(17)
S¼X1 þ/þ Xn (12)

The analytical mathematical formula for the probability density
function of a rational function of random variables was derived by
Gauss [15]. Assuming that the rational function is a simple sum of
random variables, we can derive the probability density function
for the sum of random variables. The cumulative distribution
function for S is given as
2086
FSðsÞ¼
ðs
0

/

ðs�x1�/�xn�1

0

fXðx1;/; xnÞdx1/dxn (13)

The probability density function for S, which is the derivative of
Eq. (13), is given as

fSðsÞ¼
ðs
0

/

ðs�x1�/�xn�2

0

fXðx1;/;xn�1;s�x1�/�xn�1Þdx1/dxn�1

(14)

When the number of random variables is large, the numerical
integration of Eq. (14) requires substantial time; hence, it is un-
practical. The region of integration in Eq. (14) is complicated
because the upper bounds of the variables depend on their previ-
ous variables. Furthermore, the randomvariablesmay be correlated
in practical applications.

We transform the correlated lognormal random variables to
independent identically distributed uniform random variables. The
transformation of Genz [13] was intended for integrals with con-
stant upper and lower bounds; by contrast, we develop a more
advanced and complicated transformation for the integrals, where
the upper bounds of the variables depend on their previous vari-
ables, as in Eq. (14).

Let Y1;/;Yn�1 be the logarithm of X1;/;Xn�1 as

Yi ¼ ln Xi (15)

for i ¼ 1;/; n� 1. Yi’s are the random variables of a multivariate
normal distribution with mi’s and a leading principal submatrix of
order n� 1 of S as the means and covariance matrix. Eq. (13)
becomes

fSðsÞ¼
ðlnðsÞ
�∞

/

ðlnðs�ey1�/�eyn�2 Þ

�∞

fY ðy;/; yn�1; sÞdy1/dyn�1 (16)

where
dyi ¼
d ln xi
dxi

dxi ¼
1
xi
dxi (18)

for i ¼ 1;/;n� 1.
The correlated normal random variables can be modeled with

uncorrelated standard normal random variables via an affine
transformation, as follows:
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26664
Y1

«

Yn�1

ln
�
S� eY1 �/� eYn�1

�
37775¼C

24
Z1

«

Zn�1

a

35þ
24
m1

«

mn�1

mn

35 (19)

where

a¼
ln
�
s�Pn�1

j¼1 e
mjþ
Pj

k¼1
Cj;kZk

�
� mn �

Pn�1
j¼1 Cn;jZj

Cn;n
(20)

In Eq. (19), C is the lower triangular matrix from the Cholesky
decomposition of the covariance matrix S, and Zi’s are the standard
normal random variables. By solving Eq. (19) for Z1;/;Zn�1,

Zi ¼
Yi � mi �

Pi�1
k¼1Ci;kZk

Ci; i
(21)

for i ¼ 1;/; n� 1, where Ci; k is an element of the matrix C. The
elements of the Jacobian matrix of transformation are

Ji;j ¼
vzi
vyj

¼ v

vyj

 
yi � mi �

Pj�1
m¼1Ci;mzm

Ci;i

!
(22)

for i; j ¼ 1; /; n� 1. The Jacobian matrix is a lower triangular
matrix. The absolute value of the determinant of the Jacobian
matrix is

jJj ¼
					 Yn�1

i¼1

1
Ci;i

					¼ Yn�1

i¼1

1
Ci;i

(23)

where Ci; i for i ¼ 1;/;n� 1 is always positive because the
covariance matrix C is real and positive-definite [16]. Eq. (16)
becomes

fSðtÞ¼
ðlnðtÞ�m1

C1;1

�∞

/

ðln

�
t�
Pn�2

j¼1
e
mjþ
Pj

k¼1
Cj; kzk

�
�mn�1�

Pn�2

j¼1
Cn�1; jzj

Cn�1; n�1

�∞

fZðz1;/; zn�1; sÞdz1/dzn�1 (24)

where
fZðz1;/; zn�1; sÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞn
q

Cn;n

�
s�Pn�1

j¼1 e
mjþ
Pj

k¼1
Cj; kzk

�e
�1

2

0BB@
2664
z1

«

zn�
a

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn

q
Cn;n

�
s�Pn�1

j¼1 e
mjþ
Pj

k¼1
Cj; kzk

�e�1
2 ðz21þ/þz2n�
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In Eq. (25), I is the n-dimensional identity matrix.
A standard normal random variable can be modeled with a

uniform random variable by using its cumulative distribution
function, as follows:

Ui ¼FðZiÞ (26)

for i ¼ 1; /; n� 1, where FðZiÞ is the cumulative distribution
function of a standard normal random variable Zi, and Ui is a uni-
form random variable. Eq. (24) becomes

fSðtÞ¼
ðe1
0

/

ðen�1

0

fUðu1;/;un�1; sÞdu1/dun�1 (27)

where

fUðu1;/;un�1; sÞ¼
1ffiffiffiffiffiffi

2p
p

Cn;n

�
s�Pn�1

j¼1 e
mjþ
Pj

k¼1
Cj; kF

�1ðukÞ
�e�1

2a
2

(28)

dui ¼
dFðZiÞ
dzi

dzi ¼
1ffiffiffiffiffiffi
2p

p e�
1
2z

2
i dzi (29)

and

ei¼F

0@ln
�
s�Pi�1

j¼1e
mjþ
Pj

k¼1
Cj; kF

�1ðukÞ
�
�mi�

Pi�1
j¼1Ci; jF

�1
uj�
Ci; i

1A
(30)

for i¼ 1;/; n� 1.
The interval of a uniform random variable Ui is determined by

the upper bounds of its former variables. The sampling region can
be simplified by representing the uniform random variables Ui’s as
the standard uniform random variables Wi’s via an affine trans-
formation, which is related to the convex combination of two
points, as given by

Ui ¼ eiWi (31)

where ei is the upper bound of Ui for i ¼ 1;/; n� 1. The lower
bounds in Eq. (27) are 0. Eq. (27) becomes
1

3775
T

I

2664
z1

«

zn�1

a

3775
1CCA

1þa2Þ

(25)
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fSðsÞ¼
ð1
0

/

ð1
0

fW ðw1;/;wn�1; sÞdw1/dwn�1 (32)

where

fW ðw1;/;wn�1; sÞ

¼ e1e2/en�1
1ffiffiffiffiffiffi

2p
p

Cn;n

�
s�Pn�1

j¼1 e
mjþ
Pj

k¼1
Cj; kF

�1ðwkekÞ
�e�1

2a
2

(33)

dwi ¼
1
ei
dui (34)

for i ¼ 1;/;n� 1.
Fig. 1 summarizes the change of variables described above from

correlated random variables with a complicated region of integra-
tion to independent randomvariables with a unit hypercube region
of integration.

For example, the probability density function for the sum of two
lognormally-distributed random variables (n ¼ 2) is given as fol-
lows:
fSðsÞ¼
ðs
0

fXðx1;s�x1Þdx1 ¼
ðs
0

1

2ps1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

q
x1ðs�x1Þ

e

� 1
2s2

1
s2
2ð1�r2Þ

"
ln x1�m1

lnðs�x1Þ�m2

#T
264s22 �rs1s2

�rs1s2 s21

35" ln x1�m1
lnðs�x1Þ�m2

�

dx1 ¼
ð1
0

F
�
ln s�m1

s1

�
1

ffiffiffiffiffiffi
2p

p
s2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

q  
s�e

s1F
�1

�
F

�
ln s�m1

s1

�
w1

�
þm1

!

�1
2

0BBBB@
ln

 
s�e

s1F
�1

�
F

�
ln s�m1

s1

�
w1

�
þm1

!
�m2�rs2F

�1
�
F
�
ln s�m1

s1

�
w1

�
s2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

p
1CCCCA

2

dw1 (35)
The Monte Carlo integration is an efficient method for per-
formingmulti-dimensional integration numerically. Thus, we could
apply the Monte Carlo integration method to Eq. (32) to calculate
the probability density function fSðsÞ. Eq. (32) can be expressed by
the expected value of the integrand function with respect to the

multivariate random variable W ¼ ðW1;/;Wn�1ÞT .

fSðsÞ¼V $ EW ½fWðW1;/;Wn�1; sÞ� ¼ EW ½fW ðW1;/;Wn�1; sÞ�
(36)

where V is the volume of the sample space, that is the hypercube
with uniform random variables, which equals 1. Eq. (36) is
approximated considering M independent and identical uniform
samples for W1;/;Wn�1, which are denoted as w1;m;/;wn�1;m for
m ¼ 1;/;M:
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fSðsÞz f W ðW ; sÞ¼ 1
M

XM
m¼1

fW


w1;m;/;wn�1;m; s

�
(37)

where f W ðW ; sÞ indicates the sample mean of fW ðw1;/;wn�1; sÞ.
According to the central limit theorem, the sample mean ap-
proaches a normal distribution when the sample size is sufficiently
large. The standard error of the mean is approximated with the
standard deviation of the samples, as follows:

sf W ðW ;sÞ ¼
sfW ðW ;sÞffiffiffiffiffi

M
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðfWðW ; sÞÞ

p ffiffiffiffiffi
M

p z bsbf W ðW ; sÞ

¼ 1ffiffiffiffiffi
M

p $

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M � 1

XM
m¼1



fW


w1;m;/;wn�1;m; s

�� f W ðW ; sÞ�2
vuut

(38)

where bsbf W ðW ; sÞ indicates the estimator for the standard error of

the mean.
When the confidence level is given as (1� c), the confidence

interval for fSðsÞ is given with a t-distribution because the true
standard error of the mean is not known and hence it is estimated
by the standard deviation of the samples, as follows:
Pr
�
f W ðW ; sÞ� tc=2 $ bsbf W ðW ; sÞ < fSðsÞ < f W ðW ; sÞ

þ tc=2 $ bsbf W ðW ; sÞ
�
¼1� c (39)

For a 95% confidence interval, tc=2 is 1.96. Moreover, the error of
the Monte Carlo integration for the confidence level is defined as
follows:

ε¼ tc=2 $ bsbf W ðW ; sÞ

f W ðW ; sÞ$100%
(40)

The sample mean calculation is repeated until the error is lower
than the user-specified tolerance error.

Even though the proposed approachmay not be applicable to all
minimal cutsets of the top event in the PSA of a nuclear power



Table 2
Relevant basic events and parameters [11].

Event Parameters

E½X� EF

Fig. 1. Transformation of variables to independent random variables with a unit hypercube region of integration.
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plant, it can be applicable to a pre-defined number of high-ranking
minimal cutsets that may dominate the frequency of the top event.
Also, the proposed approach can be applicable to the uncertainty
analysis of a simple system in which a small number of minimal
cutsets are obtained.

The proposed method can also be applicable to other problems
with sum of lognormal random variables. For example, the pro-
posed method is able to provide theoretical probability distribution
of the sum of operator action times while each operator action time
is assumed to follow a lognormal distribution such as the time
uncertainty analysis approach in Level 2 human reliability analysis
provided by Suh et al. [17].

3. Application to a benchmark problem

In this section, the accuracy of the proposed method is high-
lighted through a benchmark problem. We consider the example
presented in Ref. [11], which is associated with the uncertainty
analysis of a Level 1 PSA of a nuclear power plant in the United
Kingdom. The top event of the benchmark is a core damage event
Table 1
Minimal cutsets for core damage fre-
quency due to short-term loss of offsite
power [11].

1 ABC

2 ABD
3 ABE
4 AFG
5 ABH
6 ABIJ
7 ABF
8 ABK
9 ALMNH
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caused by the short-term loss of offsite power. In a practical PSA,
the fault tree for the top event involves hundreds or thousands of
basic events and an almost infinite number of minimal cutsets.
Therefore, when the fault tree is large, a cut-off value should be
applied to make the fault tree manageable [17]. Also, there are
many Level 1 PSA studies that the top event probability/frequency
(e.g. core damage frequency) is dominated by a finite number of
high ranking minimal cutsets.

As a simple example, only nine minimal cutsets with 12 basic
events are considered for the benchmark. Tables 1 and 2 present
the minimal cutsets and the parameters for the relevant basic
events, respectively. The contribution of the minimal cutsets
(Table 1) to the core damage frequency due to the short-term loss of
offsite power exceeds 83%. All the uncertainties of basic events are
A Short-term loss of offsite power 6.00E-2 5
B CCF of batteries 6.60E-6 5
C Operator fails to start backup DG by local action 1.00E-2 5
D Operator fails to start backup DG or to close breakers 2.13E-3 5
E CCF to run backup DG 8.33E-4 5
F CCF of batteries via 2 h discharge 5.20E-5 5
G CCF to start EDG 6.10E-5 5
H CCF to run EDG 4.20E-5 5
I Fail to run backup DG-A 1.58E-3 5
J Fail to run backup DG-B 1.58E-3 5
K CCF to start backup DG 1.00E-4 5
L Damage to O-ring seals 9.00E-2 5
M Severe seal damage on all RCP 1.00E-1 5
N CCF to run HPSI pump 1.20E-4 5

Abbreviations: CCF: common cause failure; DG: diesel generator; EDG: emergency
diesel generator.
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modeled with lognormal random variables.
As mentioned above, the mean values of the logarithm of

randomvariables are calculated from the first and secondmoments
of the random variables. The relationship between the second
moment of random variables and the parameters listed in Table 2 is
as follows:

Sii ¼
�
lnðEFÞ
1:64

�2

(41)

E
h
X2
i
¼ E½X�2ðeSii �1Þ (42)

Hence, the means and covariance matrix of the logarithm of
random variables for minimal cutsets can be calculated using Eq.
(4) and Eq. (5), as follows:

m¼ ½ � 20:79� 22:34� 23:28� 23:83� 26:26� 29:57� 26:05

�25:40� 29:04�T (43)

S¼

26666666666664

2:89 1:93 1:93 0:96 1:93 1:93 1:93 1:93 0:96
1:93 2:89 1:93 0:96 1:93 1:93 1:93 1:93 0:96
1:93 1:93 2:89 0:96 1:93 1:93 1:93 1:93 0:96
0:96 0:96 0:96 2:89 0:96 0:96 1:93 0:96 0:96
1:93 1:93 1:93 0:96 2:89 1:93 1:93 1:93 1:93
1:93 1:93 1:93 0:96 1:93 3:85 1:93 1:93 0:96
1:93 1:93 1:93 1:93 1:93 1:93 2:89 1:93 0:96
1:93 1:93 1:93 0:96 1:93 1:93 1:93 2:89 0:96
0:96 0:96 0:96 0:96 1:93 0:96 0:96 0:96 4:82

37777777777775
(44)

In general, the uncertainty in the top event probability is
expressed with the probability density function given in the ana-
lytic form in Eq. (32). Numerical results for the probability density
function can be calculated using Eq. (37). In other words, after
calculating the means and covariance matrix for the minimal cut-
sets, the numerical value of the theoretical probability density
function at a specific point in the domain can be obtained with Eq.
(37). El-Shanawany et al. [11] compared the resultant cumulative
distribution function and percentile calculated from Monte Carlo
simulations, Fenton-Wilkinson's method, and Wilks's method.

To verify the accuracy of the proposed method, we compared
the proposed method with Monte Carlo simulations, Fenton-Wil-
kinson's method, and Wilks's method considering the resultant
probability density function, cumulative distribution function, and
percentiles. For calculating the probability density function, the
tolerance error of the numerical integration with a 95% confidence
interval was set to 0.0001% of the sample mean, and the number of
iterations was limited to 1,000,000. The cumulative distribution
function was approximated from the probability density function
using the trapezoidal rule. The percentiles were approximated us-
ing linear interpolation from the calculated cumulative distribution
function.
Table 3
Percentiles in cumulative distribution function of core damage frequency with Monte
method.

Percentile Monte Carlo simulation Fenton-Wilkinso

5th 1.4621E-10 1.0869E-10
25th 5.9542E-10 5.1261E-10
50th 1.6262E-09 1.5066E-09
75th 4.5166E-09 4.4277E-09
95th 2.0447E-08 2.0882E-08
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In theMonte Carlo simulation, samples were generated for basic
events, while the top event frequency for the samples was calcu-
lated using a rare-event approximation. The number of simulations
was set to 1,000,000. The percentiles were estimated with Monte
Carlo simulations via linear interpolation.

Fenton-Wilkinson's method approximates the sum of lognormal
random variables to a single lognormal random variable with the
same first and secondmoments [18]. The first and secondmoments
of the sum of lognormal random variables are as follows:

E½S� ¼
Xn
i¼1

E½Xi� (45)

E
h
S2
i
¼
Xn
i¼1

E
h
X2
i

i
þ 2

Xn�1

i¼1

Xn
k¼iþ1

E½Xi�E½Xk�eCovðlnðXiÞ;lnðXkÞÞ (46)

The first moment of the top event was 5.40E-9, and the second
moment of the top event was 3.76E-16. Hence, the random variable
approximated from Fenton-Wilkinson's method is as follows:

XFW � LNð�20:31;2:55Þ (47)

Wilks's method is applicable to estimate the percentile based on
order statistics with a specified confidence level. The cumulative
distribution function at the k-th smallest value (XðkÞ) of a sample set
with sample size of n is a random variable which follows a beta
distribution.

FX
�
XðkÞ

�
� Betaðk;n� kþ1Þ (48)

Then, the probability that XðkÞ is larger than the p-th percentile
can be calculated as follows:

Pr
�
XðkÞ �Xp

�
¼Pr

�
FX
�
XðkÞ

�
�p
�
¼ Ipðk;n� kþ1Þ � a (49)

where Xp is the p-th percentile and I1�pðk;n�kþ1Þ is an incom-
plete beta function. Wilks' method defines the order k and the
sample size n to satisfy the probability in Eq. (49) with confidence
level a. The confidence level was set to 95%, and 1,000 sample sets
with a sample size of 1,000 were used to estimate the percentile
according to Wilks's method.

Fig. 2 shows a comparison of the cumulative distribution func-
tions of core damage frequency for the benchmark using Monte
Carlo simulations, Fenton-Wilkinson's methods, Wilks's method,
and the proposed method in the log and linear scales. The per-
centiles calculated with different methods and their relative errors
compared to the theoretical values calculated with the proposed
method are presented in Table 3 and Table 4, respectively. The
relative percent error, d%, is defined as follows:
Carlo simulations, Fenton-Wilkinson's method, Wilks's method, and the proposed

n's method Wilks's method Proposed method

1.7032E-10 1.4568E-10
6.5825E-10 5.9720E-10
1.7986E-09 1.6275E-09
5.0246E-09 4.5220E-09
2.4433E-08 2.0259E-08



Table 4
Relative error of percentiles for Monte Carlo simulations, Fenton-Wilkinson's method, and Wilks's method with respect to the proposed method.

Percentile Monte Carlo simulation Fenton-Wilkinson's method Wilks's method

5th 0.3606% 25.3900% 16.9113%
25th 0.2974% 14.1642% 10.2241%
50th 0.0841% 7.4335% 10.5129%
75th 0.1179% 2.0837% 11.1156%
95th 0.9267% 3.0737% 20.6021%

Fig. 2. Cumulative distribution functions for benchmark using Monte Carlo simulations, Fenton-Wilkinson's method, Wilks's method, and the proposed method in the (a) log scale
and (b) linear scale.

Fig. 3. Probability density functions for the example with Monte Carlo simulations,
Fenton-Wilkinson's method, and the proposed method.
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d% ¼
					1� Papproximation

Pproposed

					$100% (50)

where Pproposed and Papproximation are the percentile values from the
proposed method and other approximation methods, respectively.
The results listed in Tables 3 and 4 indicate that the percentiles and
relative errors are consistent with those reported by El-Shanawany
et al. [11]. The proposed method provides theoretical results that
can serve as a baseline to compare other methods. Particularly, the
relative errors when using the Monte Carlo simulation are less than
1%; thus, the Monte Carlo estimation approaches the exact results.
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Fenton-Wilkinson's method shows a relatively high accuracy in the
right tail of the distribution, whereas the method shows poor ac-
curacy in the left tail of the distribution. This is because Fenton-
Wilkinson's method relies on matching the first and second mo-
ments; thus, it is appropriate for estimating the middle and high
regions of the distribution [5]. Wilks's method provides results that
are more conservative because a 95% confidence level was adopted.
However, significant differences between the methods are not
recognized in the cumulative distribution functions or percentiles.

Fig. 3 shows the benchmark results from the probability density
functions of the core damage frequency obtained usingMonte Carlo
simulations, Fenton-Wilkinson's methods, and the proposed
method. The proposed method provides a theoretical probability
density function that has not been revealed in most previous PSA
studies. Furthermore, the Monte Carlo simulation is in good
agreement with the proposed method.

Fenton-Wilkinson's method provides less accurate results for
the proposed benchmark. This is because the method is applied
when the standard deviations of the logarithm of the summand
random variables are less than 0.9210 (4 dB) for an independent
case [6] and 2.7631 (12 dB) for an identical and correlated case [18].
Furthermore, the accuracy of Fenton-Wilkinson's method is dete-
riorated when the mean values of the summands are similar, the
standard deviations of the summands have large variance, the
correlation between the summands is low, and the number of
summands is large [19]. Therefore, Fenton-Wilkinson's method
could provide inaccurate results if the top event has more minimal
cutsets and the standard deviations of minimal cutsets have large
variance, especially when the lower cut-off value is applied. In
general, the resultant probability density function derived from
Fenton-Wilkinson's method is expected to have a larger variance
than the exact one [20], as seen in Fig. 3.

Fig. 4 shows the relative error of the Monte Carlo simulation and
Fenton-Wilkinson's method, as compared to the proposed method,
for the probability density function (Fig. 3) and cumulative



Fig. 4. Relative errors of the Monte Carlo simulation and Fenton-Wilkinson's method compared to the proposed method for the (a) probability density function and (b) cumulative
distribution function.
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distribution function (Fig. 2). Because the proposed method pro-
vides theoretically more accurate results, Fig. 4 quantitatively
shows the amount of error Monte Carlo simulation or Fenton-
Wilkinson's method may have produced in estimating the proba-
bility density function and cumulative distribution function when
applied to the benchmark problem. The relative error of the Monte
Carlo simulations in the left tail of the distribution reaches up to
100% because there are bins with no samples. It should be noted
that the relative error of the Monte Carlo simulation fluctuates
considerably over the entire abscissa range, whereas the relative
error of Fenton-Wilkinson's method remains relatively smooth. The
minima of the relative error of Fenton-Wilkinson's method indicate
the points where the probability density functions and the cumu-
lative distribution functions from Fenton-Wilkinson's method and
the proposed method intersect. The relative errors of both methods
increase in the left tail of the distributions.

The calculation time of the proposed method depends on many
factors such as the number of high ranking minimal cutsets
considered in the calculation, the number of data points in the
domain, and the number of samples for each data point. For the
benchmark problem, it took 1,803 s for the proposed method to
calculate probability density of 200 data points with 1,000,000
sample sets for each data point, that is 200,000,000 sample sets in
total. On the other hand, it took 3 s to perform Monte Carlo simu-
lations with 1,000,000 sample sets in total. The long computation
time of the proposed method is also closely related to the increased
number of sample sets which also contributes to the enhanced
accuracy of the proposedmethod.When the proposedmethod uses
100,000 sample sets for each data point, it took 214 s to calculate
probability density at 200 data points.

In the current initial idea development stage, the authors
believe that the proposed approach is able to provide the theo-
retical probability density function with up to 25 high ranking
minimal cutsets in an acceptable calculation time. As the proposed
approach is further developed, the number of high rankingminimal
cutsets considered in the calculation is expected to increase
significantly.
4. Conclusions

Uncertainty quantification is a fundamental element in PSA.
When the uncertainties of basic events are modeled with lognormal
random variables, the top event frequency or probability is well
approximated as the sum of the correlated lognormal random
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variables. We proposed a new method for analyzing the uncertainty
in the top event frequency or probability in PSA when basic events
are given with lognormal random variables by calculating the
probability density function of the sum of correlated lognormal
random variables. The proposed method is characterized by the
complex transformation of the analytic expression for the sum of
correlated lognormal random variables to an equivalent multiple
integral form with a unit hypercube region of integration. A bench-
mark problem considering uncertainty analysis showed that the
proposed method provided an accurate probability density function
and cumulative distribution function, as compared to the other
approximation methods. As a theoretical approach for the uncer-
tainty analysis in PSA, the proposed method can be used to validate
the uncertainty analysis results with other approximate methods
when the basic events are given with lognormal random variables.

The limitations of the proposed method mainly originate from
relatively long computation time owing to increased number of
sample sets proportional to the number of data points to calculate
the probability density. However, the increased number of sample
sets also contributes to enhanced accuracy in probability density
calculation because more sample sets are used to calculate the
probability density of a single data point. Future researches need to
include new algorithms for reducing the number of sample sets per
data point while the enhanced accuracy is maintained.

The proposed method provided reasonable and nearly contin-
uous results over the entire abscissa, whereas the other approxi-
mation methods provided inaccurate or discrete results. The
analytical expression with the traditional numerical integration
may suffer from the curse of dimensionality as the number of
random variables increases. Thus, the proposed method is appli-
cable to a broader range of dimensions than the traditional nu-
merical integration.

In summary, the proposed method is an effective approach
providing the probability density function of the top event fre-
quency or probability with high accuracy. As a theoretical approach,
the proposed method could serve as a mathematical framework for
developing advanced approximate methods for uncertainty ana-
lyses in PSA. Moreover, the proposedmethod can be used for awide
range of topics in PSAwhen the results are associated with the sum
of lognormal random variables.
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