과제정보
The study was conducted mainly under the National Long- & Intermediate-Term Project of the Nuclear Energy Development of the Ministry of Science and ICT, Republic of Korea (no. 2017M2A8A4015255) and the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONs) (no. 1803014) and the research fund for Korea Retrospective Dosimetry Network (KREDOS) from Korea Institute of Nuclear Safety (no.1075001113).
참고문헌
- I. Turai, K. Veress, Radiation accidents: occurrence, types, consequences, medical management, and the lessons to be leraned, CEJOEM 7 (2001) 3-14.
- B.G. Dalgarno, J.D. Mcclymont, Evaluation of ESR as a radiation accident dosimetry technique, Int. J. Radiat. Appl. Instrum. Appl. Radiat. Isot. 40 (1989) 1013-1020. https://doi.org/10.1016/0883-2889(89)90034-8
- C. Bassinet, et al., Radiation accident dosimetry on electronic components by OSL, Health Phys. 98 (2) (Feb, 2010) 440-445. https://doi.org/10.1097/01.HP.0000346335.56701.93
- C. Bassinet, et al., Radiation accident dosimetry on glass by TL and EPR spectrometry, Health Phys. 98 (2) (Feb, 2010) 400-405. https://doi.org/10.1097/01.HP.0000346330.72296.51
- T. Kubiak, Advances in EPR dosimetry in terms of retrospective determination of absorbed dose in radiation accidents, Current Topics in Biophysics 41 (2018) 11-21. https://doi.org/10.2478/ctb-2018-0002
- B.R. Park, et al., The first KREDOS-EPR intercomparison exercise using alanine pellet dosimeter in South Korea, Nucl. Eng. Technol. 52 (10) (2020) 2379-2386. https://doi.org/10.1016/j.net.2020.03.025
- H. Kim, et al., Thermoluminescence of AMOLED substrate glasses in recent mobile phones for retrospective dosimetry, Radiat. Meas. 112 (2019) 53-56.
- J. Lee, et al., OSL and TL of resistors of mobile phones for retrospective accident dosimetry, Proceedings of the KNS spring meeting 43 (34) (2012).
- H. Kim, et al., Characterization of thermoluminescence of chip cards for emergency dosimetry, Radiat. Meas. 134 (2020) 106321. https://doi.org/10.1016/j.radmeas.2020.106321
- C.H. Kim, et al., New mesh-type phantoms and their dosimetric applications, including emergencies, Ann. ICRP 47 (3-4) (2018) 45-62, 2018. https://doi.org/10.1177/0146645318756231
- J.S. Ahn, et al., Acute radiation syndrome in a non-destructive testing worker: a case report, Ann Occup Environ Med 25 (30) (2018) 59.
- C.R. Palma, et al., On the use of retrospective dosimetry to assist in the radiological triage of mass casualties exposed to ionising radiation, J. Radiol. Prot. 40 (2020) 1286-1298.
- L. Waldner, et al., The 2019-2020 EURADOS WG10 and RENEB Field Test of Retrospective Dosimetry Methods in a Small-Scale Incident Involving Ionizing Radiation, Radiation Research, 2021.
- Kim H., et al., A small-scale realistic inter-laboratory accident dosimetry comparison using the TL/OSL from mobile phone components, Radiat. Meas. 150 (2022), 106696. https://doi.org/10.1016/j.radmeas.2021.106696
- F. Trompier, et al., Epr retrospective dosimetry with fingernails: report ON first application cases, Health Phys. 106 (6) (2014) 798-805. https://doi.org/10.1097/HP.0000000000000110
- H.C.S. Lim, et al., Hospital preparedness for radiation emergencies and medical management of multiple combined radiation injury victims, Proc.Singapore.Healthc. 20 (3) (2011) 197-207. https://doi.org/10.1177/201010581102000309
- J. Lee, et al., Dual-step thermal treatment for the stability of glow curve structure and the TL sensitivity of the newly developed LiF:Mg,Cu,Si, Radiat. Meas. 42 (4-5) (2007) 597-600. https://doi.org/10.1016/j.radmeas.2007.01.080
- S.M. Hosseini Pooya, T. Orouji, Evaluation of effective source in uncertainty measurements of personal dosimetry by a harshaw TLD system, J. Biomed. Phys. Eng. 4 (2) (2014) 43-48.
- S.M. Seltzer, Calculation of photon mass energy-transfer and mass energy-absorption coefficients, Radiat. Res. 136 (2) (1993) 147-170. https://doi.org/10.2307/3578607
- M. Discher, et al., Evaluation of physical retrospective dosimetry methods in a realistic accident scenario: results of a field test, Radiat. Meas. 142 (2021) 106544. https://doi.org/10.1016/j.radmeas.2021.106544
- A. Parisi, et al., Photon energy response of LiF:Mg,Ti (MTS) and LiF:Mg,Cu,P (MCP) thermoluminescent detectors: experimental measurements and microdosimetric modeling, Radiat. Phys. Chem. 163 (2019) 67-73. https://doi.org/10.1016/j.radphyschem.2019.05.021
- M. Discher, et al., Translation of the absorbed dose in the mobile phone to organ doses of an ICRP voxel phantom using MCNPX simulation of an Ir-192 point source, Radiat. Meas. 146 (2021) 106603. https://doi.org/10.1016/j.radmeas.2021.106603
- K. Eckerman, A. Endo, ICRP Publication 107, Nuclear decay data for dosimetric calculations, Ann. ICRP 38 (3) (2008) 7-96, 2008. https://doi.org/10.1016/j.icrp.2008.10.005
- M.S. Rahman, et al., Dosimetric properties of the newly developed LiF: Mg,Cu,Si TL material, J. Sci. Res. 5 (2012), https://doi.org/10.3329/jsr.v5i1.11935.
- Computerized Imaging Reference Systems, Inc.(CIRS), ATOM® Dosimetry Phantoms (Models 701 - 706), ATOM PB 120418, 2013.