DOI QR코드

DOI QR Code

Effect of surface quality on hydrogen/helium irradiation behavior in tungsten

  • Chen, Hongyu (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • Xu, Qiu (Institute for Integrated Radiation and Nuclear Science, Kyoto University) ;
  • Wang, Jiahuan (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • Li, Peng (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • Yuan, Julong (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • Lyu, Binghai (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • Wang, Jinhu (College of Mechanical Engineering, Zhejiang University of Technology) ;
  • Tokunaga, Kazutoshi (Research Institute for Applied Mechanics, Kyushu University) ;
  • Yao, Gang (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Luo, Laima (School of Materials Science and Engineering, Hefei University of Technology) ;
  • Wu, Yucheng (School of Materials Science and Engineering, Hefei University of Technology)
  • 투고 : 2021.09.11
  • 심사 : 2021.12.06
  • 발행 : 2022.06.25

초록

As the plasma facing material in the nuclear fusion reactor, tungsten has to bear the irradiation impact of high energy particles. The surface quality of tungsten may affect its irradiation resistance, and even affect the service life of fusion reactor. In this paper, tungsten samples with different surface quality were polished by mechanical processing, subsequently conducted by D2+ implantation and thermal desorption. D2+ implantation was performed at room temperature (RT) with the irradiation dose of 1 × 1021 D2+/m2 by 5 keV D2+ ions, and thermal desorption spectroscopy measurements were done from RT to 900 K. In addition, He irradiation was also performed by 50 eV He+ ions energy with the fluxes of 5.5 × 1021 m-2s-1 and 1.5 × 1022 m-2s-1, respectively. Results reveal that the hydrogen/helium irradiation behavior are both related to surface quality. Samples with high surface quality has superior D2+ retention behavior with less D2 retained after implantation. However, such samples are more likely to generate fuzzes on the surface after helium irradiation. Different morphologies (smooth, wavy, pyramids) after helium irradiation also demonstrates that the surface morphology is related to tungsten crystallographic orientation.

키워드

과제정보

This work is supported by National Natural Science Foundation of China (Grant No. 51905485 and 51805484), Natural Science Foundation of Zhejiang Province (LY21E050011 and LR17E050002) and JSPS KAKENHI (Grant No. JP20K03900).

참고문헌

  1. Y.X. Wan, J.G. Li, Y. Liu, X.L. Wang, V. Chan, C.A. Chen, X.R. Duan, P. Fu, X. Gao, K.M. Feng, S.L. Liu, Y.T. Song, P.D. Weng, B.N. Wan, F.R. Wan, H.Y. Wang, S.T. Wu, M.Y. Ye, Q.W. Yang, G.Y. Zheng, G. Zhuang, Q. Li, CFETR Team, Overview of the present progress and activities on the CFETR, Nucl. Fusion 57 (2017) 102009. https://doi.org/10.1088/0029-5515/57/10/102009
  2. S. Javadi, B. Ouyang, Z. Zhang, M. Ghoranneviss, A. Salar Elahi, R.S. Rawat, Effects of fusion relevant transient energetic radiation, plasma and thermal load on PLANSEE double forged tungsten samples in a low-energy plasma focus device, Appl. Surf. Sci. 443 (2018) 311-320. https://doi.org/10.1016/j.apsusc.2018.03.039
  3. F. Klein, A. Litnovsky, T. Wegener, X.Y. Tan, J. Gonzalez-Julian, M. Rasinski, J. Schmitz, C. Linsmeier, M. Bram, J.W. Coenen, Sublimation of advanced tungsten alloys under DEMO relevant accidental conditions, Fusion Eng. Des. 146 (2019) 1198-1202. https://doi.org/10.1016/j.fusengdes.2019.02.039
  4. P.Q. Chen, X. Xu, B.Z. Wei, J.Y. Chen, Y.Q. Qin, J.G. Cheng, Enhanced mechanical properties and interface structure characterization of W-La2O3 alloy designed by an innovative combustion-based approach, Nucl. Eng. Technol. 53 (2021) 1593-1601. https://doi.org/10.1016/j.net.2020.11.002
  5. H.Y. Chen, L.M. Luo, J.B. Chen, X. Zan, X.Y. Zhu, Q. Xu, G.N. Luo, J.L. Chen, Y.C. Wu, Effects of zirconium element on the microstructure and deuterium retention of W-Zr/Sc2O3composites, Sci. Rep. 6 (2016) 32678. https://doi.org/10.1038/srep32678
  6. X. Zhang, X.B. Wu, C.J. Hou, X.Y. Li, C.S. Liu, First-principles calculations on interface stability and migration of H and He in W-ZrC interfaces, Appl. Surf. Sci. 499 (2020) 143995. https://doi.org/10.1016/j.apsusc.2019.143995
  7. J.H. Chen, K.L. Li, Y.F. Wang, L.L. Xing, C.F. Yu, H.L. Liu, J. Ma, W. Liu, Z.J. Shen, The effect of hot isostatic pressing on thermal conductivity of additively manufactured pure tungsten, Int. J. Refract. Metals Hard Mater. 87 (2020) 105135. https://doi.org/10.1016/j.ijrmhm.2019.105135
  8. R.A. Pitts, S. Carpentier, F. Escourbiac, T. Hirai, V. Komarov, A.S. Kukushkin, S. Lisgo, A. Loarte, M. Merola, R. Mitteau, A.R. Raffray, M. Shimada, P.C. Stangeby, Physics basis and design of the ITER plasma-facing components, J. Nucl. Mater. 415 (2011) S957-S964. https://doi.org/10.1016/j.jnucmat.2011.01.114
  9. A.R. Raffray, R. Nygren, D.G. Whyte, S. Abdel-Khalik, R. Doerner, F. Escourbiac, T. Evans, R.J. Goldston, D.T. Hoelzer, S. Konishi, P. Lorenzetto, M. Merola, R. Neu, P. Norajitra, R.A. Pitts, M. Rieth, M. Roedig, T. Rognlien, S. Suzuki, M.S. Tillack, C. Wong, High heat flux components-Readiness to proceed from near term fusion systems to power plants, Fusion Eng. Des. 85 (2010) 93-108. https://doi.org/10.1016/j.fusengdes.2009.08.002
  10. D. Nishijima, M.Y. Ye, N. Ohno, S. Takamura, Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II, J. Nucl. Mater. 329-333 (2004) 1029-1033. https://doi.org/10.1016/j.jnucmat.2004.04.129
  11. N. Yoshida, H. Iwakiri, K. Tokunaga, T. Baba, Impact of low energy helium irradiation on plasma facing metals, J. Nucl. Mater. 337-339 (2005) 946-950. https://doi.org/10.1016/j.jnucmat.2004.10.162
  12. V.K. Alimov, J. Roth, Hydrogen isotope retention in plasma-facing materials: review of recent experimental results, Phys. Scripta T128 (2007) 6-13. https://doi.org/10.1088/0031-8949/2007/T128/002
  13. G.H. Lu, H.B. Zhou, C.S. Becquart, A review of modelling and simulation of hydrogen behaviour in tungsten at different scales, Nucl. Fusion 54 (2014), 086001. https://doi.org/10.1088/0029-5515/54/8/086001
  14. Q. Xu, K. Sato, T. Yoshiie, Investigation of the interaction of He and D in FeBSi alloy, Phil. Mag. Lett. 93 (2013) 560-565. https://doi.org/10.1080/09500839.2013.822118
  15. X.Z. Cao, Q. Xu, K. Sato, T. Yoshiie, Effects of dislocations on thermal helium desorption from nickel and iron, J. Nucl. Mater. 417 (2011) 1034-1037. https://doi.org/10.1016/j.jnucmat.2010.12.212
  16. H. Kurishita, S. Matsuo, H. Arakawa, T. Sakamoto, S. Kobayashi, K. Nakai, T. Takida, M. Kato, M. Kawai, N. Yoshida, Development of re-crystallized W1.1%TiC with enhanced room-temperature ductility and radiation performance, J. Nucl. Mater. 398 (2010) 87-92. https://doi.org/10.1016/j.jnucmat.2009.10.015
  17. J.B. Chen, L.M. Luo, M.L. Zhao, Q. Xu, X. Zan, Y.C. Wu, Investigation of microstructure and irradiation behavior of W-Nb/Ti composites prepared by spark plasma sintering, Fusion Eng. Des. 112 (2016) 349-354. https://doi.org/10.1016/j.fusengdes.2016.07.003
  18. M. Battabyal, P. Spatig, B.S. Murty, N. Baluc, Investigation of microstructure and microhardness of pure W and W-2Y2O3 materials before and after ionirradiation, Int. J. Refract. Metals Hard Mater. 46 (2014) 168-172. https://doi.org/10.1016/j.ijrmhm.2014.06.004
  19. A. Manhard, M. Balden, U.v. Toussaint, Blister formation on rough and technical tungsten surfaces exposed to deuterium plasma, Nucl. Fusion 57 (2017) 126012. https://doi.org/10.1088/0029-5515/57/12/126012
  20. D. Nishijima, H. Iwakiri, K. Amano, M.Y. Ye, N. Ohno, K. Tokunaga, N. Yoshida, S. Takamura, Suppression of blister formation and deuterium retention on tungsten surface due to mechanical polishing and helium pre-exposure, Nucl. Fusion 45 (2005) 669-674. https://doi.org/10.1088/0029-5515/45/7/016
  21. K. Wang, X. Zan, M. Yu, W. Pantleon, L.M. Luo, X.Y. Zhu, P. Li, Y.C. Wu, Effects of thickness reduction on recrystallization process of warm-rolled pure tungsten plates at 1350 ℃, Fusion Eng. Des. 125 (2017) 521-525. https://doi.org/10.1016/j.fusengdes.2017.03.140
  22. D.G. Liu, L. Zheng, L.M. Luo, X. Zan, J.P. Song, Q. Xu, X.Y. Zhu, Y.C. Wu, An overview of oxidation-resistant tungsten alloys for nuclear fusion, J. Alloys Compd. 765 (2018) 299-312. https://doi.org/10.1016/j.jallcom.2018.06.202
  23. W. Hang, L.Q. Wei, T.T. Debela, H.Y. Chen, L.B. Zhou, J.L. Yuan, Y. Ma, Crystallographic orientation effect on the polishing behavior of LiTaO3 single crystal and its correlation with strain rate sensitivity, Ceram. Int. (2022), https://doi.org/10.1016/j.ceramint.2021.11.324.
  24. Q. Xu, L.M. Luo, Z. Chen, M. Hirakawa, M. Miyamoto, H.Y. Chen, K. Sato, H. Tsuchida, D2 retention behavior and microstructural evolution of W-2wt.% Y2O3 alloy during He-ion irradiation at high temperature, J. Nucl. Mater. 539 (2020) 152273. https://doi.org/10.1016/j.jnucmat.2020.152273
  25. Y. Xu, Y.F. Xu, Z.S. Wu, L.M. Luo, X. Zan, G. Yao, Y. Xi, Y.F. Wang, X.Y. Ding, H.L. Bi, X.Y. Zhu, Q. Xu, J.F. Wu, Y.C. Wu, Plasma-surface interaction experimental device: PSIEC and its first plasma exposure experiments on bulk tungsten and coatings, Fusion Eng. Des. 164 (2021) 112198. https://doi.org/10.1016/j.fusengdes.2020.112198
  26. R. Sakamoto, T. Muroga, N. Yoshida, Microstructural evolution induced by low energy hydrogen ion irradiation in tungsten, J. Nucl. Mater. 220-222 (1995) 819-822. https://doi.org/10.1016/0022-3115(94)00622-9
  27. G. Yao, H.Y. Chen, M.Q. Fu, L.M. Luo, X. Zan, Q. Xu, K. Tokunaga, X.Y. Zhu, Y.C. Wu, Deuterium irradiation resistance and relevant mechanism in W-ZrC/Sc2O3composites prepared by spark plasma sintering, Prog. Nucl. Energy 120 (2020) 103215. https://doi.org/10.1016/j.pnucene.2019.103215
  28. A. Hollingsworth, M.-F. Barthe, M. Yu Lavrentiev, P.M. Derlet, S.L. Dudarev, D.R. Mason, Z. Hu, P. Desgardin, J. Hess, S. Davies, B. Thomas, H. Salter, E.F.J. Shelton, K. Heinola, K. Mizohata, A. De Backer, A. Baron-Wiechec, I. Jepu, Y. Zayachuk, A. Widdowson, E. Meslin, A. Morellec, Comparative study of deuterium retention and vacancy content of self-ion irradiated tungsten, J. Nucl. Mater. 558 (2022) 153373. https://doi.org/10.1016/j.jnucmat.2021.153373
  29. K. Sato, R. Tamiya, Q. Xu, H. Tsuchida, T. Yoshiie, Detection of deuterium trapping sites in tungsten by thermal desorption spectroscopy and positron annihilation spectroscopy, Nucl. Mater. Energy 9 (2016) 554-559. https://doi.org/10.1016/j.nme.2016.09.014
  30. Y.G. Li, Y. Yang, M.P. Short, Z.J. Ding, Z. Zeng, J. Li, Ion radiation albedo effect: influence of surface roughness on ion implantation and sputtering of materials, Nucl. Fusion 57 (2017), 016038. https://doi.org/10.1088/0029-5515/57/1/016038
  31. C.M. Parish, H. Hijazi, H.M. Meyer, F.W. Meyer, Effect of tungsten crystallographic orientation on He-ion-induced surface morphology changes, Acta Mater. 62 (2014) 173-181. https://doi.org/10.1016/j.actamat.2013.09.045
  32. F.S. Liu, H. Ren, S.X. Peng, K.G. Zhu, Effect of crystal orientation on low flux helium and hydrogen ion irradiation in polycrystalline tungsten, Nucl. Instrum. Methods Phys. Res. B 333 (2014) 120-123. https://doi.org/10.1016/j.nimb.2014.04.004