DOI QR코드

DOI QR Code

Corrosion behavior and mechanism of CLAM and 316L steels in flowing Pb-17Li alloy under magnetic field

  • Xiao, Zunqi (Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences) ;
  • Liu, Jing (Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences) ;
  • Jiang, Zhizhong (Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences) ;
  • Luo, Lin (Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences) ;
  • Huang, Qunying (Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences)
  • Received : 2021.09.13
  • Accepted : 2021.12.16
  • Published : 2022.06.25

Abstract

The liquid lead-lithium (Pb-17Li) blanket has many applications in fusion reactors due to its good tritium breeding performance, high heat transfer efficiency and safety. The compatibility of liquid Pb-17Li alloy with the structural material of blanket under magnetic field is one of the concerns. In this study, corrosion experiments China low activation martensitic (CLAM) steel and 316L steel were carried out in a forced convection Pb-17Li loop under 1.0 T magnetic field at 480 ℃ for 1000 h. The corrosion results on 316L steel showed the characteristic with a superficial porous layer resulted from selective leaching of high-soluble alloy elements and subsequent phase transformation from austenitic matrix to ferritic phase. Then the porous layers were eroded by high-velocity jet fluid. The main corrosion mechanism of CLAM steel was selective dissolution-base corrosion attack on the microstructure boundary regions and exclusively on high residual stress areas. CLAM steel performed a better corrosion resistance than that of 316L steel. The high Ni dissolution rate and the erosion of corroded layers are the main causes for the severe corrosion of 316L steel.

Keywords

Acknowledgement

This work was funded with the National Natural Science Foundation of China with Grant No. 51901224 and Youth Innovation Promotion Association of Chinese Academy of Sciences with Grant No. 2021449.

References

  1. S. Malang, A.R. Raffray, N.B. Morley, An example pathway to a fusion power plant system based on lead-lithium breeder: comparison of the dual-coolant lead-lithium (DCLL) blanket with the helium-cooled lead-lithium (HCLL) concept as initial step, Fusion Eng. Des. 84 (2009) 2145-2157. https://doi.org/10.1016/j.fusengdes.2009.02.049
  2. C.P.C. Wong, J.F. Salavy, Y. Kim, I. Kirillov, E.R. Kumar, N.B. Morley, S. Tanaka, Y.C. Wu, Overview of liquid metal TBM concepts and programs, Fusion Eng. Des. 83 (2008) 850-857. https://doi.org/10.1016/j.fusengdes.2008.06.040
  3. G. Benamati, C. Fazio, I. Ricapito, Mechanical and corrosion behaviour of EUROFER 97 steel exposed to Pb-17Li, J. Nucl. Mater. 307-311 (2002) 1391-1395. https://doi.org/10.1016/S0022-3115(02)00990-X
  4. A.F. Tavassoli, E. Diegele, R. Lindau, N. Luzginova, H. Tanigawa, Current status and recent research achievements in ferritic/martensitic steels, J. Nucl. Mater. 455 (2014) 269-276. https://doi.org/10.1016/j.jnucmat.2014.06.017
  5. S. Saroja, A. Dasgupta, R. Divakar, S. Raju, E. Mohandas, M. Vijayalakshmi, K.B.S. Rao, B. Raj, Development and characterization of advanced 9Cr ferritic/martensitic steels for fission and fusion reactors, J. Nucl. Mater. 409 (2011) 131-139. https://doi.org/10.1016/j.jnucmat.2010.09.022
  6. Y. Wu, Conceptual design activities of FDS series fusion power plants in China, Fusion Eng. Des. 81 (2006) 2713-2718. https://doi.org/10.1016/j.fusengdes.2006.07.068
  7. Y. Wu, Conceptual design and testing strategy of a dual functional lithium-lead test blanket module in ITER and EAST, Nucl. Fusion 47 (2007) 1533-1539. https://doi.org/10.1088/0029-5515/47/11/015
  8. Q. Huang, Development status of CLAM steel for fusion application, J. Nucl. Mater. 455 (2014) 649-654. https://doi.org/10.1016/j.jnucmat.2014.08.055
  9. Q. Huang, Status and improvement of CLAM for nuclear application, Nucl. Fusion 57 (2017), 086042. https://doi.org/10.1088/0029-5515/57/8/086042
  10. Q. Huang, Q. Wu, S. Liu, C. Li, B. Huang, L. Peng, S. Zheng, Q. Han, Y. Wu, Latest progress on R&D of ITER DFLL-TBM in China, Fusion Eng. Des. 86 (2011) 2611-2615. https://doi.org/10.1016/j.fusengdes.2011.03.099
  11. J. Konys, W. Krauss, Z. Zhu, Q. Huang, Comparison of corrosion behavior of EUROFER and CLAM steels in flowing Pb-15.7Li, J. Nucl. Mater. 455 (2014) 491-495. https://doi.org/10.1016/j.jnucmat.2014.07.045
  12. J. Konys, W. Krauss, H. Steiner, J. Novotny, A. Skrypnik, Flow rate dependent corrosion behavior of Eurofer steel in Pb-15.7Li, J. Nucl. Mater. 417 (2011) 1191-1194. https://doi.org/10.1016/j.jnucmat.2010.12.277
  13. J. Konys, W. Krauss, J. Novotny, H. Steiner, Z. Voss, O. Wedemeyer, Compatibility behavior of EUROFER steel in flowing Pb-17Li, J. Nucl. Mater. 386 (2009) 678-681. https://doi.org/10.1016/j.jnucmat.2008.12.271
  14. H. Glasbrenner, J. Konys, Z. Vosz, Corrosion behaviour of low activation steels in flowing Pb-17Li, J. Nucl. Mater. 281 (2000) 225-230. https://doi.org/10.1016/S0022-3115(00)00186-0
  15. Y. Li, Q. Huang, Y. Wu, T. Nagasaka, T. Muroga, Mechanical properties and microstructures of China low activation martensitic steel compared with JLF-1, J. Nucl. Mater. 367 (2007) 117-121. https://doi.org/10.1016/j.jnucmat.2007.03.012
  16. M. Kondo, M. Takahashi, T. Tanaka, V. Tsisar, T. Muroga, Compatibility of reduced activation ferritic martensitic steel JLF-1 with liquid metals Li and Pb-17Li, Fusion Eng. Des. 87 (2012) 1777-1787. https://doi.org/10.1016/j.fusengdes.2011.12.013
  17. M. Kondo, M. Ishii, Y. Hishinuma, T. Tanaka, T. Nozawa, T. Muroga, Metallurgical study on corrosion of RAFM steel JLF-1 in Pb-Li alloys with various Li concentrations, Fusion Eng. Des. 125 (2017) 316-325. https://doi.org/10.1016/j.fusengdes.2017.04.058
  18. P. Chakraborty, V. Singh, P. Trivedi, S. Malhotra, K. Sing, P. Mukherjee, V. Kain, R. Tewari, Effect of magnetic field on corrosion behavior of Indian reduced activation ferritic/martensitic steel in liquid Pb-Li, Nucl. Fusion 59 (2019) 126001. https://doi.org/10.1088/1741-4326/ab388c
  19. P. Chakraborty, V. Singh, S. Bysakh, R. Tewari, V. Kain, Short-term corrosion behavior of Indian RAFM steel in liquid Pb-Li: corrosion mechanism and effect of alloying elements, J. Nucl. Mater. 520 (2019) 208-217. https://doi.org/10.1016/j.jnucmat.2019.04.018
  20. P. Chakraborty, N.N. Kumar, N.S. Krishna, N.K. Maheshwari, R. Tewari, Effect of oxide layer and the duration of exposure on the liquid metal corrosion mechanism of RAFM steel in molten Pb-Li, Corrosion Sci. 183 (2021) 109321. https://doi.org/10.1016/j.corsci.2021.109321
  21. J.S. Yoon, Y.I. Jung, D.W. Lee, S.K. Kim, H.G. Jin, E.H. Lee, S.D. Park, D.J. Kim, Corrosion test results of ARAA and FMS steel in the experimental loop for liquid breeder, IEEE Trans. Plasma Sci. 46 (2018) 2663-2667. https://doi.org/10.1109/tps.2018.2813308
  22. Q. Huang, S. Gao, Z. Zhu, M. Zhang, Y. Song, C. Li, Y. Chen, X. Ling, X. Zhou, Progress in compatibility experiments on lithium-lead with candidate structural materials for fusion in China, Fusion Eng. Des. 84 (2009) 242-246. https://doi.org/10.1016/j.fusengdes.2008.12.038
  23. S. Gao, Q. Huang, Z. Zhu, Z. Guo, X. Ling, Y. Chen, Corrosion behavior of CLAM steel in static and flowing LiPb at 480 ℃ and 550 ℃, Fusion Eng. Des. 86 (2011) 2627-2631. https://doi.org/10.1016/j.fusengdes.2011.03.061
  24. Y. Chen, Q. Huang, S. Gao, Z. Zhu, X. Ling, Y. Song, Y. Chen, W. Wang, Corrosion analysis of CLAM steel in flowing liquid LiPb at 480 ℃, Fusion Eng. Des. 85 (2010) 1909-1912. https://doi.org/10.1016/j.fusengdes.2010.06.021
  25. X. Chen, Q. Yuan, B. Madigan, W. Xue, Long-term corrosion behavior of martensitic steel welds in static molten Pb-17Li alloy at 550℃, Corrosion Sci. 96 (2015) 178-185. https://doi.org/10.1016/j.corsci.2015.04.001
  26. F. Barbier, Magnetic field effect on deposition of corrosion products in liquid Pb-17Li, J. Nucl. Mater. 283 (2000) 1267-1271. https://doi.org/10.1016/S0022-3115(00)00154-9
  27. F. Barbier, A. Alemany, S. Martemianov, On the influence of a high magnetic field on the corrosion and deposition processes in the liquid Pb-17Li alloy, Fusion Eng. Des. 43 (1998) 199-208. https://doi.org/10.1016/S0920-3796(98)00420-7
  28. R. Moreau, Y. Brechet, L. Maniguet, Eurofer corrosion by the flow of the eutectic alloy Pb-Li in the presence of a strong magnetic field, Fusion Eng. Des. 86 (2011) 106-120. https://doi.org/10.1016/j.fusengdes.2010.08.050
  29. I. Bucenieks, R. Krishbergs, E. Platacis, G. Lipsbergs, F. Muktepavela, Investigation of corrosion phenomena in eurofer steel in Pb-17Li stationary flow exposed to a magnetic field, Magnetohydrodynamics 42 (2006) 409-414. https://doi.org/10.22364/mhd.42.4.8
  30. A.S. Sree, K. Tanaji, C. Poulami, R.K. Fotedar, E.R. Kumar, A.K. Suri, E. Platacis, A. Ziks, I. Bucenieks, A. Poznjaks, Preliminary corrosion studies of P-91 in flowing lead-lithium with and without magnetic field for Indian lead-lithium ceramic breeder test blanket module, Nucl. Fusion 54 (2014), 083029. https://doi.org/10.1088/0029-5515/54/8/083029
  31. M.C. Gazquez, T. Hernandez, F. Muktepavela, E. Platacis, A. Shishko, Magnetic field effect on the corrosion processes at the Eurofer-Pb-17Li flow interface, J. Nucl. Mater. 465 (2015) 633-639. https://doi.org/10.1016/j.jnucmat.2015.06.024
  32. S. Smolentsev, S. Saedi, S. Malang, M. Abdou, Numerical study of corrosion of ferritic/martensitic steels in the flowing PbLi with and without a magnetic field, J. Nucl. Mater. 432 (2013) 294-304. https://doi.org/10.1016/j.jnucmat.2012.08.027
  33. Z. Zhu, Q. Huang, S. Gao, S. Yong, C. Li, L. Peng, H. Chen, S. Liu, X. Ling, Y. Chen, Design analysis of DRAGON-IV LiPb loop, Fusion Eng. Des. 86 (2011) 2666-2669. https://doi.org/10.1016/j.fusengdes.2011.03.083
  34. E. Yamaki, K. Ginestar, L. Martinelli, Dissolution mechanism of 316L in lead-bismuth eutectic at 500 ℃, Corrosion Sci. 53 (2011) 3075-3085. https://doi.org/10.1016/j.corsci.2011.05.031