DOI QR코드

DOI QR Code

Numerical analysis on in-core ignition and subsequent flame propagation to containment in OPR1000 under loss of coolant accident

  • 투고 : 2021.11.14
  • 심사 : 2022.03.19
  • 발행 : 2022.08.25

초록

Since Fukushima nuclear power plant (NPP) accident in 2011, the importance of research on various severe accident phenomena has been emphasized. Particularly, detailed analysis of combustion risk is necessary following the containment damage caused by combustion in the Fukushima accident. Many studies have been conducted to evaluate the risk of local hydrogen concentration increases and flame propagation using computational code. In particular, the potential for combustion by local hydrogen concentration in specific areas within the containment has been emphasized. In this study, the process of flame propagation generated inside a reactor core to containment during a loss of coolant accident (LOCA) was analyzed using MELCOR 2.1 code. Later in the LOCA scenario, it was expected that hydrogen combustion occurred inside the reactor core owing to oxygen inflow through the cold leg break area. The main driving force of the oxygen intrusion is the elevated containment pressure due to the molten corium-concrete interaction. The thermal and mechanical loads caused by the flame threaten the integrity of the containment. Additionally, the containment spray system effectiveness in this situation was evaluated because changes in pressure gradient and concentrations of flammable gases greatly affect the overall behavior of ignition and subsequent containment integrity.

키워드

과제정보

This work was supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (grant number 2003006-0120-CG100). Additionally, this work was supported by the National Research Foundation of Korea (NRF) and funded by the Ministry of Science, ICT, and Future Planning, Republic of Korea (grant number NRF-2021M2D2A2076382).

참고문헌

  1. B.R. Sehgal, Nuclear safety in light water reactors: severe accident phenomenology, Ch. 3 Early Containment (2012).
  2. K. Il Ahn, S.Y. Park, W. Choi, S.J. Kim, Best-practice severe accident analysis for the OPR1000 short-term SBO sequence using MELCOR2.2 and MAAP5, Ann. Nucl. Energy 160 (2021), https://doi.org/10.1016/j.anucene.2021.108350.
  3. A. Kecebas, , M. Kayfeci, Hydrogen properties, Solar Hydrogen Prod.: Process. Syst. Technol. (2019) 3-29, https://doi.org/10.1016/B978-0-12-814853-2.00001-1.
  4. Z.M. Shapiro, T.R. Moffette, Hydrogen Flammability Data and Application to PWR Loss-Of-Coolant Accident, 1957. Wapd-Sc-545.
  5. J.E. Hustad, O.K. Sonju, Experimental studies of lower flammability limits of gases and mixtures of gases at elevated temperatures, Combust. Flame 71 (3) (1988) 283-294, https://doi.org/10.1016/0010-2180(88)90064-8.
  6. F. Van den Schoor, F. Verplaetsen, The upper flammability limit of methane/ hydrogen/air mixtures at elevated pressures and temperatures, Int. J. Hydrogen Energy 32 (13) (2007) 2548-2552, https://doi.org/10.1016/j.ijhydene.2006.10.053.
  7. C. Appel, J. Mantzaras, R. Schaeren, R. Bombach, B. Kaeppeli, A. Inauen, An experimental and numerical investigation of turbulent catalytically stabilized channel flow combustion of hydrogen/air mixtures over platinum, Proc. Combust. Inst. 29 (1) (2002) 1031-1038, https://doi.org/10.1016/S1540-7489(02)80130-4.
  8. M. Ilbas, A.P. Crayford, I. Yilmaz, P.J. Bowen, N. Syred, Laminar-burning velocities of hydrogen-air and hydrogen-methane-air mixtures: an experimental study, Int. J. Hydrogen Energy 31 (12) (2006) 1768-1779, https://doi.org/10.1016/j.ijhydene.2005.12.007.
  9. S. Gupta, E. Schmidt, B. Von Laufenberg, M. Freitag, G. Poss, F. Funke, G. Weber, Thai test facility for experimental research on hydrogen and fission product behaviour in light water reactor containments, Nucl. Eng. Des. 294 (October) (2015) 183-201, https://doi.org/10.1016/j.nucengdes.2015.09.013.
  10. P. Wang, Y. Zhao, Y. Chen, L. Bao, S. Meng, S. Sun, Study on the lower flammability limit of H2/CO in O2/H2O environment, Int. J. Hydrogen Energy 42 (16) (2017) 11926-11936, https://doi.org/10.1016/j.ijhydene.2017.02.143.
  11. H. Le Chatelier, Estimation of firedamp by flammability limits, Ann. Mines 19 (1891) 388-395.
  12. M. Vidal, W. Wong, W.J. Rogers, M.S. Mannan, Evaluation of lower flammability limits of fuel-air-diluent mixtures using calculated adiabatic flame temperatures, J. Hazard Mater. 130 (1-2 SPEC. ISS.) (2006) 21-27, https://doi.org/10.1016/j.jhazmat.2005.07.080.
  13. J. Jeon, W. Choi, S.J. Kim, A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation, Nucl. Eng. Technol. 51 (7) (2019) 1749-1757, https://doi.org/10.1016/j.net.2019.05.005.
  14. M. Vidal, W. Wong, W.J. Rogers, M.S. Mannan, Evaluation of lower flammability limits of fuel-air-diluent mixtures using calculated adiabatic flame temperatures, J. Hazard Mater. 130 (1-2 SPEC. ISS.) (2006) 21-27, https://doi.org/10.1016/j.jhazmat.2005.07.080.
  15. S. Kondo, K. Takizawa, A. Takahashi, K. Tokuhashi, A. Sekiya, A study on flammability limits of fuel mixtures, J. Hazard Mater. 155 (3) (2008) 440-448, https://doi.org/10.1016/j.jhazmat.2007.11.085.
  16. Y.S. Kim, J. Jeon, C.H. Song, S.J. Kim, Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model, Nucl. Eng. Technol. 52 (12) (2020) 2836-2846, https://doi.org/10.1016/j.net.2020.07.040.
  17. M. Hertzberg, Flammability limits and pressure development, in: M. Berman (Ed.), H2-air Mixtures (NUREG/CR-2017-Vol3), 1981. United States.
  18. H.F. Coward, G.W. Jones, Limits of Flammability of Gases and Vapors, 1952.
  19. B.C. Lee, et al., An optimal hydrogen control analysis for the in-containment refueling storage tank (IRWST) of the Korean next generation reactor (KNGR) containment under severe accidents, Int. Conf. Nuclear Eng. Nice France (2001).
  20. OECD/NEA, Flame Acceleration and Deflagration-To-Detonation Transition in Nuclear Safety, 2000. NEA/CSNI/R(2000)7.
  21. OECD/NEA, ISP-49 on Hydrogen Combustion, 2011. NEA/CSNI/R(2011)9.
  22. OECD/NEA, Status Report on Hydrogen Management and Related Computer Codes, 2014. NEA/CSNI/R(2014)8.
  23. N.K. Kim, J. Jeon, W. Choi, S.J. Kim, Systematic hydrogen risk analysis of OPR1000 containment before RPV failure under station blackout scenario, Ann. Nucl. Energy 116 (2018) 429-438, https://doi.org/10.1016/j.anucene.2018.02.050.
  24. J. Wang, Y. Zhang, K. Mao, Y. Huang, W. Tian, G. Su, S. Qiu, MELCOR simulation of core thermal response during a station blackout initiated severe accident in China pressurized reactor (CPR1000), Prog. Nucl. Energy 81 (2015) 6-15, https://doi.org/10.1016/j.pnucene.2014.12.008.
  25. G. Huang, L. Fang, Analysis of hydrogen control in severe accidents of CANDU6, Ann. Nucl. Energy 60 (2013) 301-307, https://doi.org/10.1016/j.anucene.2013.04.019.
  26. M. Saghafi, F. Yousefpour, K. Karimi, S.M. Hoseyni, Determination of PAR configuration for PWR containment design: a hydrogen mitigation strategy, Int. J. Hydrogen Energy 42 (10) (2017) 7104-7119, https://doi.org/10.1016/j.ijhydene.2017.01.110.
  27. J. Deng, X.W. Cao, A study on evaluating a passive autocatalytic recombiner PAR-system in the PWR large-dry containment, Nucl. Eng. Des. 238 (10) (2008) 2554-2560, https://doi.org/10.1016/j.nucengdes.2008.04.011.
  28. S. S, ahin, M.S. Sarwar, Hydrogen hazard and mitigation analysis in PWR containment, Ann. Nucl. Energy 58 (2013) 132-140, https://doi.org/10.1016/j.anucene.2013.03.001.
  29. E. Lopez-Alonso, D. Papini, G. Jimenez, Hydrogen distribution and Passive Autocatalytic Recombiner (PAR) mitigation in a PWR-KWU containment type, Ann. Nucl. Energy 109 (2017) 600-611, https://doi.org/10.1016/j.anucene.2017.05.064.
  30. KHNP (Korea Hydro & Nuclear Power Co.), Shin Kori 1&2 Final Safety Analysis Report, 2008.
  31. C. Kim, H. Kim, I. Ryu, Y. Moon, Comparison MAAP5.03 with MAAP5.04 from Recombination of CO point of view, in: Transactions of the Korean Nuclear Society Autumn Meeting, 2016.
  32. L.L. Humphries, R.K. Cole, D.L. Louie, V.G. Figueroa, M.F. Y, MELCOR Reference Manual, 2015.
  33. L.L. Humphries, R.K. Cole, D.L. Louie, V.G. Figueroa, M.F. Y, MELCOR Users Guide, 2015.
  34. M.T. Farmer, S. Lomperski, R.W. Aeschlimann, D.J. Kilsdonk, N.E. Division, OECD/MCCI-2010-TR02 OECD MCCI Project Category 2 Coolability Engineering Enhancement Tests: Final Report, 2010.
  35. M.T. Farmer, S. Lomperski, D.J. Kilsdonk, R.W. Aeschlimann, N.E. Division, OECD/MCCI-2010-TR07 OECD MCCI-2 Project Final Report, 2010.
  36. ANS (American Nuclear Society), Time Response Design Criteria for Safetyrelated Operator Actions, ANSI/ANS-58.8-1994, 1994. La Grange Park, Illinois.
  37. W. Jung, J. Park, J. Kim, J. Ha, Analysis of an operators' performance time and its application to a human reliability analysis in nuclear power plants, IEEE Trans. Nucl. Sci. 54 (5) (2007) 1801-1811, https://doi.org/10.1109/TNS.2007.905163.
  38. J. Park, Y. Kim, J.H. Kim, W. Jung, S.C. Jang, Estimating the response times of human operators working in the main control room of nuclear power plants based on the context of a seismic event - a case study, Ann. Nucl. Energy 85 (2015) 36-46, https://doi.org/10.1016/j.anucene.2015.03.053.
  39. Y.G. No, C. Lee, S. Hur, P.H. Seong, Development of a method for identifying severe status requiring early entrance of SAMG considering human action time, Ann. Nucl. Energy 122 (2018) 317-327, https://doi.org/10.1016/j.anucene.2018.09.006.