DOI QR코드

DOI QR Code

Super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm for alpha imaging detector

  • Kim, Guna (Korea Institute of Radiological and Medical Sciences) ;
  • Lim, Ilhan (Korea Institute of Radiological and Medical Sciences) ;
  • Song, Kanghyon (Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Jong-Guk (Korea Institute of Radiological and Medical Sciences)
  • Received : 2021.08.13
  • Accepted : 2021.12.17
  • Published : 2022.06.25

Abstract

Recently, the demand for alpha imaging detectors for quantifying the distributions of alpha particles has increased in various fields. This study aims to reconstruct a high-resolution image from an alpha imaging detector by applying a super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm. To perform the super-spatial resolution method, several images are acquired while slightly moving the detector to predefined positions. Then, a forward model for imaging is established by the system matrix containing the mechanical shifts, subsampling, and measured point-spread function of the imaging system. Using the measured images and system matrix, the MLEM algorithm is implemented, which converges towards a high-resolution image. We evaluated the performance of the proposed method through the Monte Carlo simulations and phantom experiments. The results showed that the super-spatial resolution method was successfully applied to the alpha imaging detector. The spatial resolution of the resultant image was improved by approximately 12% using four images. Overall, the study's outcomes demonstrate the feasibility of the super-spatial resolution method for the alpha imaging detector. Possible applications of the proposed method include high-resolution imaging for alpha particles of in vitro sliced tissue and pre-clinical biologic assessments for targeted alpha therapy.

Keywords

Acknowledgement

This study was supported by a grant of the Basic Science Research Program through the National Research Foundation (NRF) (NRF-2020R1A2C1003333) and grants of the Korea Institute of Radiological and Medical Sciences (KIRAMS) (No. 50461-2021; 50547-2021), funded by Ministry of Science and ICT (MSIT), Republic of Korea.

References

  1. T. Back, L. Jacobsson, The α-camera: a quantitative digital autoradiography technique using a charge-coupled device for ex vivo high-resolution bioimaging of a-particles, J. Nucl. Med. 51 (2010) 1616-1623, https://doi.org/10.2967/jnumed.110.077578.
  2. B.W. Miller, S.H.L. Frost, S.L. Frayo, A.L. Kenoyer, E. Santos, J.C. Jones, D.J. Green, D.K. Hamlin, D.S. Wilbur, D.R. Fisher, J.J. Orozco, O.W. Press, J.M. Pagel, B.M. Sandmaier, Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera, Med. Phys. 42 (2015) 4094-4105, https://doi.org/10.1118/1.4921997.
  3. J. Sand, S. Ihantola, K. Perajarvi, A. Nicholl, E. Hrnecek, H. Toivonen, J. Toivonen, Imaging of alpha emitters in a field environment, Nucl. Instrum. Methods Phys. Res. A. 782 (2015) 13-19, https://doi.org/10.1016/j.nima.2015.01.087.
  4. Y. Morishita, A. Di Fulvio, S.D. Clarke, K.J. Kearfott, S.A. Pozzi, A Organic scintillator-based alpha/beta detector for radiological decontamination, Nucl. Instrum. Methods Phys. Res. 935 (2019) 207-213, https://doi.org/10.1016/j.nima.2019.04.024.
  5. R. Felix-Bautista, C. Hern andez-Hernandez, B.E. Zendejas-Leal, R. Fragoso, J.I. Golzarri, C. Vazquez-Lopez, G. Espinosa, Evolution of etched nuclear track profiles of alpha particles in CR-39 by atomic force microscopy, Radiat. Meas. 50 (2013) 197-200, https://doi.org/10.1016/j.radmeas.2013.01.002.
  6. M.A. Unzueta, W. Mixter, Z. Croft, J. Joseph, B. Ludewigt, A. Persaud, Position sensitive alpha detector for an associated particle imaging system, AIP Conf. Proc. 2160 (2019), 050005, https://doi.org/10.1063/1.5127697.
  7. Y. Morishita, S. Yamamoto, K. Izaki, J.H. Kaneko, K. Toi, Y. Tsubota, Development of a Si-PM based alpha camera for plutonium detection in nuclear fuel facilities, Nucl. Instrum. Methods Phys. Res. A. 747 (2014) 81-86, https://doi.org/10.1016/j.nima.2013.12.052.
  8. Y. Morishita, K. Izaki, J.H. Kaneko, S. Yamamoto, M. Higuchi, T. Torii, Development of a GdSiO (GPS) scintillator-based alpha imaging detector for rapid plutonium detection in high-radon environments, IEEE Trans. Nucl. Sci. 67 (2020) 2203-2208, https://doi.org/10.1109/TNS.2020.3014997.
  9. Y. Morishita, T. Torii, H. Usami, H. Kikuchi, W. Utsugi, S. Takahira, Detection of alpha particle emitters originating from nuclear fuel inside reactor building of Fukushima Daiichi Nuclear Power Plant, Sci. Rep. 9 (2019) 1-14, https://doi.org/10.1038/s41598-018-36962-4.
  10. B. Seitz, N. Campos Rivera, A.G. Stewart, Energy resolution and temperature dependence of Ce:GAGG coupled to 3 mm × 3 mm silicon photomultipliers, IEEE Trans. Nucl. Sci. 63 (2016) 503-508, https://doi.org/10.1109/TNS.2016.2535235.
  11. Y. Morishita, S. Yamamoto, K. Izaki, J.H. Kaneko, N. Nemoto, Flexible alpha camera for detecting plutonium contamination, Radiat. Meas. 103 (2017) 33-38, https://doi.org/10.1016/j.radmeas.2017.04.009.
  12. S. Yamamoto, J. Kataoka, T. Oshima, Y. Ogata, T. Watabe, H. Ikeda, Y. Kanai, J. Hatazawa, Development of a high resolution gamma camera system using finely grooved GAGG scintillator, Nucl. Instrum. Methods Phys. Res. A. 821 (2016) 28-33, https://doi.org/10.1016/j.nima.2016.03.060.
  13. S. Yamamoto, K. Kamada, A. Yoshikawa, Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate, Sci. Rep. 8 (2018) 1-10, https://doi.org/10.1038/s41598-018-21500-z.
  14. S. Yamamoto, Y. Hirano, K. Kamada, A. Yoshikawa, Development of an ultrahigh-resolution radiation real-time imaging system to observe trajectory of alpha particles in a scintillator, Radiat. Meas. 134 (2020) 106368, https://doi.org/10.1016/j.radmeas.2020.106368.
  15. G. Trinci, R. Massari, M. Scandellari, F. Scopinaro, A. Soluri, Super Spatial Resolution (SSR) method for scintigraphic imaging, Nucl. Instrum. Methods Phys. Res. A. 626 (2011) 120-127, https://doi.org/10.1016/j.nima.2010.10.077.
  16. A. Soluri, G. Atzeni, A. Ucci, T. Bellone, F. Cusanno, G. Rodilossi, R. Massari, New device based on the super spatial resolution (SSR) method, Nucl. Instrum. Methods Phys. Res. A. 728 (2013) 150-156, https://doi.org/10.1016/j.nima.2013.06.094.
  17. R. Massari, A. D'Elia, A. Soluri, A. Soluri, Super Spatial Resolution (SSR) method for small animal SPECT imaging: a Monte Carlo study, Nucl. Instrum. Methods Phys. Res. A. 982 (2020) 164584, https://doi.org/10.1016/j.nima.2020.164584.
  18. S. Jan, et al., GATE : a simulation toolkit for PET and SPECT, Phys. Med. Biol. 49 (2004) 4543-4561, https://doi.org/10.1088/0031-9155/49/19/007.
  19. H.O. Anger, Scintillation camera, Rev. Sci. Instrum. 29 (1958) 27-33, https://doi.org/10.1063/1.1715998.
  20. Z. Wang, A.C. Bovik, A universal image quality index, IEEE Signal Process. Lett. 9 (2002) 81-84, https://doi.org/10.1109/97.995823.
  21. F.B. Bouallegue, J.F. Crouzet, D. Mariano-Goulart, A heuristic statistical stopping rule for iterative reconstruction in emission tomography, Ann. Nucl. Med. 27 (2013) 84-95, https://doi.org/10.1007/s12149-012-0657-5.
  22. Y. Morishita, S. Yamamoto, K. Izaki, J.H. Kaneko, K. Hoshi, T. Torii, Optimization of thickness of GAGG scintillator for detecting an alpha particle emitter in a field of high beta and gamma background, Radiat. Meas. 112 (2018) 1-5, https://doi.org/10.1016/j.radmeas.2018.02.003.