Acknowledgement
This study was supported by a grant of the Basic Science Research Program through the National Research Foundation (NRF) (NRF-2020R1A2C1003333) and grants of the Korea Institute of Radiological and Medical Sciences (KIRAMS) (No. 50461-2021; 50547-2021), funded by Ministry of Science and ICT (MSIT), Republic of Korea.
References
- T. Back, L. Jacobsson, The α-camera: a quantitative digital autoradiography technique using a charge-coupled device for ex vivo high-resolution bioimaging of a-particles, J. Nucl. Med. 51 (2010) 1616-1623, https://doi.org/10.2967/jnumed.110.077578.
- B.W. Miller, S.H.L. Frost, S.L. Frayo, A.L. Kenoyer, E. Santos, J.C. Jones, D.J. Green, D.K. Hamlin, D.S. Wilbur, D.R. Fisher, J.J. Orozco, O.W. Press, J.M. Pagel, B.M. Sandmaier, Quantitative single-particle digital autoradiography with α-particle emitters for targeted radionuclide therapy using the iQID camera, Med. Phys. 42 (2015) 4094-4105, https://doi.org/10.1118/1.4921997.
- J. Sand, S. Ihantola, K. Perajarvi, A. Nicholl, E. Hrnecek, H. Toivonen, J. Toivonen, Imaging of alpha emitters in a field environment, Nucl. Instrum. Methods Phys. Res. A. 782 (2015) 13-19, https://doi.org/10.1016/j.nima.2015.01.087.
- Y. Morishita, A. Di Fulvio, S.D. Clarke, K.J. Kearfott, S.A. Pozzi, A Organic scintillator-based alpha/beta detector for radiological decontamination, Nucl. Instrum. Methods Phys. Res. 935 (2019) 207-213, https://doi.org/10.1016/j.nima.2019.04.024.
- R. Felix-Bautista, C. Hern andez-Hernandez, B.E. Zendejas-Leal, R. Fragoso, J.I. Golzarri, C. Vazquez-Lopez, G. Espinosa, Evolution of etched nuclear track profiles of alpha particles in CR-39 by atomic force microscopy, Radiat. Meas. 50 (2013) 197-200, https://doi.org/10.1016/j.radmeas.2013.01.002.
- M.A. Unzueta, W. Mixter, Z. Croft, J. Joseph, B. Ludewigt, A. Persaud, Position sensitive alpha detector for an associated particle imaging system, AIP Conf. Proc. 2160 (2019), 050005, https://doi.org/10.1063/1.5127697.
- Y. Morishita, S. Yamamoto, K. Izaki, J.H. Kaneko, K. Toi, Y. Tsubota, Development of a Si-PM based alpha camera for plutonium detection in nuclear fuel facilities, Nucl. Instrum. Methods Phys. Res. A. 747 (2014) 81-86, https://doi.org/10.1016/j.nima.2013.12.052.
- Y. Morishita, K. Izaki, J.H. Kaneko, S. Yamamoto, M. Higuchi, T. Torii, Development of a GdSiO (GPS) scintillator-based alpha imaging detector for rapid plutonium detection in high-radon environments, IEEE Trans. Nucl. Sci. 67 (2020) 2203-2208, https://doi.org/10.1109/TNS.2020.3014997.
- Y. Morishita, T. Torii, H. Usami, H. Kikuchi, W. Utsugi, S. Takahira, Detection of alpha particle emitters originating from nuclear fuel inside reactor building of Fukushima Daiichi Nuclear Power Plant, Sci. Rep. 9 (2019) 1-14, https://doi.org/10.1038/s41598-018-36962-4.
- B. Seitz, N. Campos Rivera, A.G. Stewart, Energy resolution and temperature dependence of Ce:GAGG coupled to 3 mm × 3 mm silicon photomultipliers, IEEE Trans. Nucl. Sci. 63 (2016) 503-508, https://doi.org/10.1109/TNS.2016.2535235.
- Y. Morishita, S. Yamamoto, K. Izaki, J.H. Kaneko, N. Nemoto, Flexible alpha camera for detecting plutonium contamination, Radiat. Meas. 103 (2017) 33-38, https://doi.org/10.1016/j.radmeas.2017.04.009.
- S. Yamamoto, J. Kataoka, T. Oshima, Y. Ogata, T. Watabe, H. Ikeda, Y. Kanai, J. Hatazawa, Development of a high resolution gamma camera system using finely grooved GAGG scintillator, Nucl. Instrum. Methods Phys. Res. A. 821 (2016) 28-33, https://doi.org/10.1016/j.nima.2016.03.060.
- S. Yamamoto, K. Kamada, A. Yoshikawa, Ultrahigh resolution radiation imaging system using an optical fiber structure scintillator plate, Sci. Rep. 8 (2018) 1-10, https://doi.org/10.1038/s41598-018-21500-z.
- S. Yamamoto, Y. Hirano, K. Kamada, A. Yoshikawa, Development of an ultrahigh-resolution radiation real-time imaging system to observe trajectory of alpha particles in a scintillator, Radiat. Meas. 134 (2020) 106368, https://doi.org/10.1016/j.radmeas.2020.106368.
- G. Trinci, R. Massari, M. Scandellari, F. Scopinaro, A. Soluri, Super Spatial Resolution (SSR) method for scintigraphic imaging, Nucl. Instrum. Methods Phys. Res. A. 626 (2011) 120-127, https://doi.org/10.1016/j.nima.2010.10.077.
- A. Soluri, G. Atzeni, A. Ucci, T. Bellone, F. Cusanno, G. Rodilossi, R. Massari, New device based on the super spatial resolution (SSR) method, Nucl. Instrum. Methods Phys. Res. A. 728 (2013) 150-156, https://doi.org/10.1016/j.nima.2013.06.094.
- R. Massari, A. D'Elia, A. Soluri, A. Soluri, Super Spatial Resolution (SSR) method for small animal SPECT imaging: a Monte Carlo study, Nucl. Instrum. Methods Phys. Res. A. 982 (2020) 164584, https://doi.org/10.1016/j.nima.2020.164584.
- S. Jan, et al., GATE : a simulation toolkit for PET and SPECT, Phys. Med. Biol. 49 (2004) 4543-4561, https://doi.org/10.1088/0031-9155/49/19/007.
- H.O. Anger, Scintillation camera, Rev. Sci. Instrum. 29 (1958) 27-33, https://doi.org/10.1063/1.1715998.
- Z. Wang, A.C. Bovik, A universal image quality index, IEEE Signal Process. Lett. 9 (2002) 81-84, https://doi.org/10.1109/97.995823.
- F.B. Bouallegue, J.F. Crouzet, D. Mariano-Goulart, A heuristic statistical stopping rule for iterative reconstruction in emission tomography, Ann. Nucl. Med. 27 (2013) 84-95, https://doi.org/10.1007/s12149-012-0657-5.
- Y. Morishita, S. Yamamoto, K. Izaki, J.H. Kaneko, K. Hoshi, T. Torii, Optimization of thickness of GAGG scintillator for detecting an alpha particle emitter in a field of high beta and gamma background, Radiat. Meas. 112 (2018) 1-5, https://doi.org/10.1016/j.radmeas.2018.02.003.