과제정보
This work was supported by the National Research Foundation of Korea, Republic of Korea (NRF) grant and National Research Council of Science & Technology (NST) grant funded by the Korean government (MSIT) [grant numbers 2021M2E2A2081061, CAP-20-03-KAERI].
참고문헌
- John E. Kelly, Generation IV International Forum: a decade of progress through international cooperation, Prog. Nucl. Energy 77 (2014) 240-246. https://doi.org/10.1016/j.pnucene.2014.02.010
- K. Aoto, P. Dufour, Y. Hongyi, J.P. Glatz, Y.I. Kim, Y. Ashurko, R. Hill, N. Uto, A summary of sodium-cooled fast reactor development, Prog. Nucl. Energy 77 (2014) 247-265. https://doi.org/10.1016/j.pnucene.2014.05.008
- S.J. Ahn, K.S. Ha, W.P. Chang, S.H. Kang, K.L. Lee, C.W. Choi, S.W. Lee, J. Yoo, J.- H. Jeong, T. Jeong, Evaluation of a sodium-water reaction event caused by steam generator tubes break in the prototype generation IV sodium-cooled fast reactor, Nucl. Eng. Technol. 48 (4) (2016) 952-964. https://doi.org/10.1016/j.net.2016.02.016
- J. Yoo, J. Chang, J.Y. Lim, J.S. Cheon, T.H. Lee, S.K. Kim, K.L. Lee, H.K. Joo, Overall system description and safety characteristics of prototype Gen IV sodium cooled fast reactor in Korea, Nucl. Eng. Technol. 48 (5) (2016) 1059-1070. https://doi.org/10.1016/j.net.2016.08.004
- J. Hong, J.-W. Han, Technology status of sodium-water reaction minimized heat exchanger. KAERI Report, 2018. KAERI/AR-1198/2018.
- J. Hong, Development Report on the Sodium-Water Reaction Minimized Heat Exchanger, KAERI report, 2018. SFR-330-P2-486-001.
- S. Im, J. Hong, J.-W. Han, S.R. Choi, et al., Preliminary Development of a Copper Bonded Steam Generator for Minimizing a Sodium-Water Reaction, Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 23-24, 2019.
- E.R. Adam, C.V. Gregory, Brief history of the operation of the prototype fast reactor at Dounreay, Nucl. Eng. 35 (1994) 112-117.
- Fast Reactor Database 2006 Update, 2006. IAEA-TECDOC-1531.
- L.M. Finch, FOREIGN TRIP REPORT. No. BNWL-602. Battelle-Northwest, Pacific Northwest Lab., Richland, Wash, 1966.
- D.V. Sherwood, Y. Chikazawa, A reliable steam generator that allow the elimination of the secondary sodium circuit in an LMFBR, Nucl. Technol. 150 (2005) 111-119. https://doi.org/10.13182/nt05-a3609
- B. Lubarsky, S.J. Kaufman, Review of Experimental Investigations of Liquid-Metal Heat Transfer, 1956. NACA-TR-1270.
- ASME Boiler and Pressure Vessel Code, Section-II, Part D, Properties (Metric), ASME BPVC.II.D.M-2015.
- Y. Birol, Thermal fatigue testing of CuCrZr alloy for high temperature tooling application, J. Mater. Sci. 45 (2010) 4501-4506. https://doi.org/10.1007/s10853-010-4542-0
- E.K. Kim, S.-O. Kim, M.-H. Wi, J.H. Eoh, Development of the Thermal Hydraulic Analysis Code for a Copper Bonded Steam Generator in LMR, 2002. KAERI/TR-2300/2002.
- J.C. Chen, Correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Eng. Chem. Process Des. Dev. 5 (3) (1966) 322-329. https://doi.org/10.1021/i260019a023
- J.B. Heineman, An Experimental Investigation of Heat Transfer to Superheated Steam in Round and Rectangular Channels, 1960. ANL-6213.
- R.K. Shah, D.P. Sekulic, Fundamentals of Heat Exchanger Design, John Wiley & Sons Inc., Hoboken, New Jersey, 2003.
- A. Triboix, Exact and approximate formulas for cross flow heat exchangers with unmixed fluids, Int. Commun. Heat Mass Tran. 36 (2009) 121-124. https://doi.org/10.1016/j.icheatmasstransfer.2008.10.012
- S.J. Yoon, P. Sabharwall, E.S. Kim, Numerical study on crossflow printed circuit heat exchanger for advanced small modular reactors, Int. J. Heat Mass Tran. 70 (2014) 250-263. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.079
- S.R. Choi, "Preliminary Report on the System Design Concept for the TRU Core", 2018. SFR-050-P2-486-001.