DOI QR코드

DOI QR Code

Numerical study on CMT boron replenishment strategy for an AP1000 nuclear power unit

  • Wang, Hong (Naval Architecture and Ocean Engineering College, Dalian Maritime University) ;
  • Zhang, Miao (Naval Architecture and Ocean Engineering College, Dalian Maritime University) ;
  • Li, Jialong (Naval Architecture and Ocean Engineering College, Dalian Maritime University) ;
  • Wang, Junpeng (Shandong Haiyang Nuclear Power CO. LTD)
  • Received : 2021.09.22
  • Accepted : 2022.01.02
  • Published : 2022.06.25

Abstract

The passive safety system is adopted in an AP1000 nuclear power unit to improve the operation safety of the whole unit. However, due to boron diffusion and periodic sampling, boron dilution occurs in the core makeup tank. The boron replenishment process in the core makeup tank is essential and becomes particularly important. Based on the validated models, this article numerically investigates the influence of the replenishment flow rate and the position on the boron distribution in the core makeup tank. The thermal fatigue phenomenon of the "T" connection caused by replenishment is analyzed. Finally, the replenishment strategy is proposed to benefit both boron mixing in the core makeup tank and eliminating the thermal fatigue of the "T" connection.

Keywords

Acknowledgement

This study is supported by Shandong Haiyang Nuclear Power CO. LTD. Authors are sincerely grateful to engineers for supports.

References

  1. H. Yu, M.J. Wang, R. Cai, D.L. Zhang, W.X. Tian, S.Z. Qiu, G.H. Su, Development and validation of boron diffusion model in nuclear reactor core sub-channel analysis, Ann. Nucl. Energy 130 (2019) 208-217. https://doi.org/10.1016/j.anucene.2019.02.046
  2. T. Zhou, C. Sheng, Pressurized Water Reactor Nuclear Power Plant System and Equipment, China electric power press, Beijing, 2012.
  3. Yankai Li, Meng Lin, Hou Dong, Qualitative analysis of water supply loss accident, Atomic Energy Sci. Technol. 9 (2012) 295.
  4. C.G. Lin, Passive Safety Advanced Nuclear Power Plant AP1000, Atomic energy press, Beijing, 2008.
  5. Hao Yu, Haoran Ju, Mingjun Wang, Jing Zhang, Suizheng Qiu, Wenxi Tian, G.H. Su, Study of boron diffusion models and dilution accidents in nuclear reactor: a comprehensive review, Ann. Nucl. Energy 148 (2020) 107659. https://doi.org/10.1016/j.anucene.2020.107659
  6. K. Umminger, W. Kastner, J. Liebert, T. Mull, Thermal hydraulics of PWRs with respect to boron dilution phenomena. Experimental results from the test facilities PKL and UPTF, Nucl. Eng. Des. 204 (2001) 191-203. https://doi.org/10.1016/S0029-5493(00)00336-8
  7. B. Woods, M. Gavrilas, D. Shaool, An analysis of internal dilute slug injection in a PWR integral test facility, in: Proc. 8th Int. Conf. Nucl. Engng, ICONE-8, Baltimore, U. S.A, 2000. CDROM, paper 8482.
  8. R.J. Henninger, S.B. Woodruff, UNMITIGATED BORON DILUTION EVENTS IN A PWR. Second International Topical Meeting on Nuclear Reactor Thermal Hydraulics, 1983. Santa Barbara, California.
  9. J.R. Macian, J.H. Mahaffy, Numerical diffusion and the tracking of solute fields in system codes: Part I. One-dimensional flows, Nucl. Eng. Des. 179 (3) (1998) 297-319. https://doi.org/10.1016/S0029-5493(97)00290-2
  10. F. Mascari, G. Vella, A.D. Nevo, et al., Analysis, by RELAP5 Code, of Boron Dilution Phenomena in a Mid-loop Operation Transient, Performed in PKL III F2. 1 RUN 1 Test. Nuclear Energy for New Europe, 2007.
  11. T. Barrachina, A. Soler, A. Jambrina, et al., High order boron transport scheme in TRAC-BF1, in: International Nuclear Atlantic Conference, 2013.
  12. D. Mirkovic, D.J. Diamond, Boron flushing during a BWR anticipated transient without scram, International Conference on Multiple Criteria Decision Making Mcdm-bridging Disciplines (1990).
  13. T. Hohne, S. Kliem, U. Rohde, F.P. Weiss, Boron dilution transients during natural circulation flow in PWR experiments and CFD simulations, Nucl. Eng. Des. 238 (2008) 1987-1995. https://doi.org/10.1016/j.nucengdes.2007.10.032
  14. T. Hohne, S. Kliem, U. Bieder, Modeling of a buoyancy-driven flow experiment at the ROCOM test facility using the CFD codes CFX-5 and Trio-U, Nucl. Eng. Des. 236 (12) (2006) 1309-1325. https://doi.org/10.1016/j.nucengdes.2005.12.005
  15. T. Dury, B. Hemstrom, S. Shepel, CFD simulation of the vattenfall 1/5th-scale PWR model for boron dilution studies, Nucl. Eng. Des. 238 (3) (2008) 577-589. https://doi.org/10.1016/j.nucengdes.2007.02.038
  16. U. Rohde, T. Hohne, S. Kliem, B. Hemstrom, et al., Fluid mixing and flow distribution in a primary circuit of a nuclear pressurized water reactor validation of CFD codes, Nucl. Eng. Des. 237 (2007) 1639-1655. https://doi.org/10.1016/j.nucengdes.2007.03.015
  17. A. Schaffrath, K.C. Fischer, T. Hahm, et al., Validation of the CFD code Fluent by post-test calculation of a density-driven ROCOM experiment, Nucl. Eng. Des. 237 (15) (2007) 1899-1908. https://doi.org/10.1016/j.nucengdes.2007.02.029
  18. F. Ducros, U. Bieder, O. Cioni, T. Fortin, B. Fournier, G. Fauchet, P. Quemere, Verification and validation considerations regarding the qualification of numerical schemes for LES for dilution problems, Nucl. Eng. Des. 240 (2010) 2123-2130. https://doi.org/10.1016/j.nucengdes.2009.11.033
  19. S.T. Jayaraju, P. Sathiaha, E.M.J. Komena, E. Baglietto, Large Eddy Simulation for an inherent boron dilution transient, Nucl. Eng. Des. 262 (2013) 484-498. https://doi.org/10.1016/j.nucengdes.2013.05.024
  20. ANSYS FLUENT 19.0 Theory Guide.
  21. C.R. Wilke, Diffusion properties of multicomponent gases, Chem. Eng. Prog. 46 (2) (1950) 95-104.
  22. T.E. Tan, Principles of Chemical Engineering, Chemical Industry Press, Beijing, 2013.
  23. K.K.Y. Kuo, Principles of Combustion, John Wilkey and Sons, New York, 1986.
  24. Hong Wang, Miao Zhang, Junpeng Wang, Zhitao Tian, Numerical study of boron diffusion in CMT and related thermal fatigue near cold legs of an AP1000 nuclear power unit, Prog. Nucl. Energy 132 (2021) 103592. https://doi.org/10.1016/j.pnucene.2020.103592