DOI QR코드

DOI QR Code

Preliminary strong ground motion simulation at seismic stations within nuclear power plant sites in South Korea by a scenario earthquake on the causative fault of 2016 Gyeongju earthquake

  • Choi, Hoseon (Korea Institute of Nuclear Safety, Department of Nuclear Safety Research)
  • 투고 : 2021.06.15
  • 심사 : 2022.01.14
  • 발행 : 2022.07.25

초록

Stochastic and an empirical Green's function (EGF) methods are preliminarily applied to simulate strong ground motions (SGMs) at seismic stations within nuclear power plant (NPP) sites in South Korea by an assumed large earthquake with MW6.5 (scenario earthquake) on the causative fault of the 2016 Gyeongju earthquake with MW5.5 (mainshock). In the stochastic method, a ratio of spectral amplitudes of observed and simulated waveforms for the mainshock is assumed to be an adjustment factor. In the EGF method, SGMs by the mainshock are simulated assuming SGMs by the 2016 Gyeongju earthquake with MW5.0 (foreshock) as the EGF. To simulate SGMs by the scenario earthquake, a ratio of fault length to width is assumed to be 2:1 in the stochastic method, and SGMs by the mainshock are assumed to be EGF in the EGF method. The results are similar based on a bias of the simulated response spectra by the two methods, and the simulated response spectra by the two methods exceeded commonly standard design response spectra anchored at 0.3 g of NPP sites slightly at a frequency band above 4 Hz, but considerable attention to interpretation is required since it is an indirect comparison.

키워드

과제정보

This study was supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety using financial resources granted by the Nuclear Safety and Security Commission of the Republic of Korea (No. 1705010-0521-SB130 and No. 1805020-0421-CG100).

참고문헌

  1. D.H. Park, J.M. Lee Jm, C.E. Baag, J.K. Kim Jk, Stochastic prediction of strong ground motion and attenuation equations in the southeastern Korean Peninsula, J. Geol. Soc. Korea 37 (1) (2001) 21-30.
  2. N.D. Jo, C.E. Baag, Stochastic prediction of strong ground motions in southern Korea, J. Earthquake Eng. Soc. Korea 5 (4) (2001) 17-26.
  3. J.G. Junn, N.D. Jo, C.E. Baag, Stochastic prediction of strong ground motions in southern Korea, Geosci. J. 6 (3) (2002) 203-214. https://doi.org/10.1007/BF02912691
  4. N.D. Jo, C.E. Baag, Estimation of spectrum decay parameter k and stochastic prediction of strong ground motions in southeastern Korea, J. Earthquake Eng. Soc. Korea 7 (6) (2003) 59-70. https://doi.org/10.5000/EESK.2003.7.6.059
  5. G.M. Atkinson, K. Assatourians, Implementation and validation of EXSIM (a stochastic finite-fault ground-motion simulation algorithm) on the SCEC broadband platform, Seismol Res. Lett. 86 (1) (2015) 48-60. https://doi.org/10.1785/0220140097
  6. D.S. Dreger, G.C. Beroza, S.M. Day, C.A. Goulet, T.H. Jordan, P.A. Spudich, J.P. Stewart, Validation of the SCEC broadband platform V14.3 simulation methods using pseudospectral acceleration data, Seismol Res. Lett. 86 (1) (2015) 39-47. https://doi.org/10.1785/0220140118
  7. S.H. Hartzell, Earthquake aftershocks as Green's functions, Geophys. Res. Lett. 5 (1) (1978) 1-4. https://doi.org/10.1029/gl005i001p00001
  8. W.B. Joyner, D.M. Boore, On simulating large earthquakes by Green's-function addition of smaller earthquakes, Earthquake Source Mech. 37 (1986) 269-274.
  9. K. Irikura, K. Kamae, Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green's function technique, Ann. Geophys. 37 (6) (1994) 1721-1743.
  10. H. Miyake, T. Iwata, K. Irikura, Source characterization for broadband ground-motion simulation: kinematic heterogeneous source model and strong motion generation area, Bull. Seismol. Soc. Am. Vol.93 (6) 2531-2545. https://doi.org/10.1785/0120020183
  11. U.S. Nuclear Regulatory Commission, Seismic and Geologic Siting Criteria for Nuclear Power Plants, 10 CFR Part 100 Appendix A.
  12. T.C. Hanks, R.K. McGuire, The character of high-frequency strong ground motion, Bull. Seismol. Soc. Am. 71 (6) (1981) 2071-2095. https://doi.org/10.1785/BSSA0710062071
  13. D.M. Boore, Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra, Bull. Seismol. Soc. Am. 73 (6A) (1983) 1865-1894.
  14. G.R. Saragoni, G.C. Hart, Simulation of artificial earthquakes, Earthq. Eng. Struct. Dynam. 2 (3) (1973) 249-267. https://doi.org/10.1002/eqe.4290020305
  15. S.H. Yoo, J. Rhie, H. Choi, K. Mayeda, Evidence for non-self-similarity and transitional increment of scaled energy in the 2005 west off Fukuoka seismic sequence, J. Geophys. Res. 115 (2010) B08308. https://doi.org/10.1029/2009jb007169
  16. M. Son, C.S. Cho, J.S. Shin, H.M. Rhee, D.H. Sheen, Spatiotemporal distribution of events during the first three months of the 2016 Gyeongju, Korea, earthquake sequence, Bull. Seismol. Soc. Am. 108 (1) (2018) 210-217. https://doi.org/10.1785/0120170107
  17. H.M. Rhee, Analysis of Seismic Source Parameters of Earthquakes in the Korean Peninsula and Characteristics of Strong Ground Motions, Thesis for the Degree of Ph.D, Jeonnam National University, 2018.
  18. S.K. Kim, Seismic wave attenuation in the southern Korea Peninsula: comparison by the applied method and used data, J. Korean Geol. Soc. Korea 43 (2) (2007) 207-217.
  19. E.A. Wirth, A.D. Frankel J.E. Vidale, Evaluating a kinematic method for generating broadband ground motions for great subduction zone earthquakes: application to the 2003 MW 8.3 Tokachi-Oki earthquake, Bull. Seismol. Soc. Am. 107 (4) (2017) 1737-1753.
  20. A. Frankel, Rupture history of the 2011 M 9 Tohoku Japan earthquake determined form strong-motion and high-rate GPS recordings: subevents radiating energy in different frequency bands, Bull. Seismol. Soc. Am. 103 (2B) (2013) 1290-1306. https://doi.org/10.1785/0120120148
  21. S. Hartzell, S. Harmsen, A. Frankel, S. Larsen, Calculation of broadband time histories of ground motion: comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake, Bull. Seismol. Soc. Am. 89 (6) (1999) 1484-1504. https://doi.org/10.1785/BSSA0890061484
  22. D.L. Wells, K.J. Coppersmith, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am. 84 (4) (1994) 974-1002.
  23. I.A. Beresnev, G.M. Atkinson, Modeling finite-fault radiation from the un spectrum, Bull. Seismol. Soc. Am. 87 (1) (1997) 67-84. https://doi.org/10.1785/BSSA0870010067
  24. The Headquarters for Earthquake Research Promotion, Strong Ground Motion Prediction Method for Earthquakes with Specified Source Faults ("Recipe"), 2017.
  25. J. Carrillo, A. Rubiano, A. Delgado, Evaluation of Green's function when simulating earthquake records for dynamic tests, Ingeniera E Invest. 33 (3) (2013) 28-33.
  26. P.A. Rydelek, I.S. Sacks, Earthquake slip rise time and rupture propagation: numerical results of the quantum earthquake model, Bull. Seismol. Soc. Am. 86 (3) (1996) 567-574. https://doi.org/10.1785/BSSA0860030567
  27. U.S. Nuclear Regulatory Commission, Design Response Spectra for Seismic Design of Nuclear Power Plants, Regulatory Guide 1.60 Rev. 2, 2014.
  28. A. Emolo, N. Sharma, G. Festa, A. Zollo, V. Convertito, J.H. Park, H.C. Chi, I.S. Lim, Ground-motion prediction equations for South Korea Peninsula, Bull. Seismol. Soc. Am. 105 (5) (2015) 2625-2640. https://doi.org/10.1785/0120140296
  29. D.H. Sheen, T.S. Kang, J. Rhie, A local magnitude scale for South Korea, Bull. Seismol. Soc. Am. 108 (5A) (2018) 2748-2755. https://doi.org/10.1785/0120180112