Acknowledgement
This research was supported by the Nuclear Research & Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) [grant number NRF-2019M2D2A1A03056998], and the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KOFONS) funded by the Nuclear Safety and Security Commission (NSSC), Republic of Korea [grant number 2003001].
References
- A. Muley, R.M. Manglik, Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates, J. Heat Tran. 121 (1999) 110-117, https://doi.org/10.1115/1.2825923.
- C. Gulenoglu, F. Akturk, S. Aradag, N. Sezer Uzol, S. Kakac, Experimental comparison of performances of three different plates for gasketed plate heat exchangers, Int. J. Therm. Sci. 75 (2014) 249-256, https://doi.org/10.1016/j.ijthermalsci.2013.06.012.
- H. Kumar, The plate heat exchanger: construction and design, in: Inst. Chem. Eng. Symp. Ser., 1984, pp. 1275-1288.
- B. Thonon, Design method for plate evaporators and condensers, in: BHR, Gr. Conf. Ser. Publ, Mechanical Engineering Publications Limited, 1995, pp. 37-50.
- D.H. Han, K.J. Lee, Y.H. Kim, Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations, Appl. Therm. Eng. 23 (2003) 1209-1225, https://doi.org/10.1016/S1359-4311(03)00061-9.
- T.S. Khan, M.S. Khan, M.C. Chyu, Z.H. Ayub, Experimental investigation of evaporation heat transfer and pressure drop of ammonia in a 60° chevron plate heat exchanger, Int. J. Refrig. 35 (2012) 336-348, https://doi.org/10.1016/j.ijrefrig.2011.10.018.
- M.S. Khan, T.S. Khan, M.C. Chyu, Z.H. Ayub, Evaporation heat transfer and pressure drop of ammonia in a mixed configuration chevron plate heat exchanger, Int. J. Refrig. 41 (2014) 92-102, https://doi.org/10.1016/j.ijrefrig.2013.12.015.
- M.S. Khan, T.S. Khan, M.C. Chyu, Z.H. Ayub, Experimental investigation of evaporation heat transfer and pressure drop of ammonia in a 30° chevron plate heat exchanger, Int. J. Refrig. 35 (2012) 1757-1765, https://doi.org/10.1016/j.ijrefrig.2012.05.019.
- Y.Y. Yan, T.F. Lin, Evaporation heat transfer and pressure drop of refrigerant R134a in a plate heat exchanger, J. Heat Tran. 121 (1999) 118-127, https://doi.org/10.1115/1.2825924.
- Y.Y. Hsieh, T.F. Lin, Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger, Int. J. Heat Mass Tran. 45 (2002) 1033-1044, https://doi.org/10.1016/S0017-9310(01)00219-8.
- Y.C. Tsai, F.B. Liu, P.T. Shen, Investigations of the pressure drop and flow distribution in a chevron-type plate heat exchanger, Int. Commun. Heat Mass Tran. 36 (2009) 574-578, https://doi.org/10.1016/j.icheatmasstransfer.2009.03.013.
- X.H. Han, L.Q. Cui, S.J. Chen, G.M. Chen, Q. Wang, A numerical and experimental study of chevron, corrugated-plate heat exchangers, Int. Commun. Heat Mass Tran. 37 (2010) 1008-1014, https://doi.org/10.1016/j.icheatmasstransfer.2010.06.026.
- W. Yoon, J.H. Jeong, Development of a numerical analysis model using a flow network for a plate heat exchanger with consideration of the flow distribution, Int. J. Heat Mass Tran. 112 (2017) 1-17, https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.087.
- L.O. Freire, D. Ad De Andrade, On applicability of plate and shell heat exchangers for steam generation in naval PWR, Nucl. Eng. Des. 280 (2014) 619-627, https://doi.org/10.1016/j.nucengdes.2014.09.039.
- I.H. Kim, J. Won, T. Bae, K. Yi, H.R. Choi, G.S. Kim, S.K. Lee, S. Kim, C.K. Chung, B.G. Kim, J.T. Seo, B.J. Lee, Development of BANDI-60S for a Floating Nuclear Power Plant, vol. 35, 2019, pp. 24-26.
- R.L. Amalfi, F. Vakili-Farahani, J.R. Thome, Flow boiling and frictional pressure gradients in plate heat exchangers. Part 1: review and experimental database, Int. J. Refrig. 61 (2016) 166-184, https://doi.org/10.1016/j.ijrefrig.2015.07.010.
- R.L. Amalfi, F. Vakili-Farahani, J.R. Thome, Flow boiling and frictional pressure gradients in plate heat exchangers. Part 2: comparison of literature methods to database and new prediction methods, Int. J. Refrig. 61 (2016) 185-203, https://doi.org/10.1016/j.ijrefrig.2015.07.009.
- P.A. Kew, K. Cornwell, Correlations for the prediction of boiling heat transfer in small-diameter channels, Appl. Therm. Eng. 17 (1997) 705-715, https://doi.org/10.1016/S1359-4311(96)00071-3.
- S. Kakac, B. Bon, A Review of two-phase flow dynamic instabilities in tube boiling systems, Int. J. Heat Mass Tran. 51 (2008) 399-433, https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.026.