Acknowledgement
이 연구는 산업통상자원부의 2022년 "바인더 및 코팅용 피치를 활용한 실리콘산화물/인조흑연 복합체 개발" 지원 사업으로 수행되었으며, 이에 감사드립니다.
References
- Q. Cheng, W. He, X. Zhang, M. Li, and X. Song, Recent advances in composite membranes modified with inorganic nanoparticles for high-performance lithium ion batteries, RSC Adv., 6, 10250-10265 (2016). https://doi.org/10.1039/C5RA21670B
- M. F. Lagadec, R. Zahn, and V. Wood, Characterization and performance evaluation of lithium-ion battery separators, Nat. Energy, 4, 16-25 (2018). https://doi.org/10.1038/s41560-018-0295-9
- X. Yin, Y. Zhang, J.-J. Yuan, B.-K. Zhu, L.-P. Zhu, Y.-Z. Song, and C.-C. Sun, Tannic acid/polyethyleneimine-decorated polypropylene separators for Li-Ion batteries and the role of the interfaces between separator and electrolyte, Electrochim. Acta, 275, 25-31 (2018). https://doi.org/10.1016/j.electacta.2018.03.099
- M. Waqas, S. Ali, W. Lv, D. Chen, B. Boateng, and W. He, High-performance PE-BN/PVDF-HFP bilayer separator for lithium-ion batteries, Adv. Mater. Interfaces, 6, 1801330 (2019). https://doi.org/10.1002/admi.201801330
- J. Zhang, L. Yue, Q. Kong, Z. Liu, X. Zhou, C. Zhang, Q. Xu, B. Zhang, G. Ding, B. Qin, Y. Duan, Q. Wang, J. Yao, G. Cui, and L. Chen, Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery, Sci. Rep., 4, 1-8 (2014).
- H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci., 7, 3857-3886 (2014). https://doi.org/10.1039/C4EE01432D
- J. Hao, G. Lei, Z. Li, L. Wu, Q. Xiao, and L. Wang, A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery, J. Membr. Sci., 428, 11-16 (2013). https://doi.org/10.1016/j.memsci.2012.09.058
- C. J. Orendorff, T. N. Lambert, C. A. Chavez, M. Bencomo, and K. R. Fenton, Polyester separators for lithium-ion cells: Improving thermal stability and abuse tolerance, Adv. Energy Mater., 3, 314-320 (2013). https://doi.org/10.1002/aenm.201200292
- X. Zhu, X. Jiang, X. Ai, H. Yang, and Y. Cao, A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries, ACS Appl. Mater. Interfaces, 7, 24119-24126 (2015). https://doi.org/10.1021/acsami.5b07230
- J. Shi, Y. Xia, Z. Yuan, H. Hu, X. Li, H. Zhang, and Z. Liu, Silencing NADPH-cytochrome P450 reductase results in reduced acaricide resistance in Tetranychus cinnabarinus (Boisduval), Sci. Rep., 5, 1-11 (2015).
- R. Luo, C. Wang, Z. Zhang, W. Lv, Z. Wei, Y. Zhang, X. Luo, and W. He, Three-dimensional nanoporous polyethylene-reinforced PVDF-HFP separator enabled by dual-solvent hierarchical gas liberation for ultrahigh-rate lithium ion batteries, ACS Appl. Energy Mater., 1, 921-927 (2018). https://doi.org/10.1021/acsaem.7b00091
- H. Wang and H. Gao, A sandwich-like composite nonwoven separator for Li-ion batteries, Electrochim. Acta, 215, 525-534 (2016). https://doi.org/10.1016/j.electacta.2016.08.039
- R. S. Baldwin, M. Guzik, and M. Shierski, Properties and performance attributes of novel Co-extruded polyolefin battery separator materials part 1: Mechanical properties, NASA Center for AeroSpace Information, 216979, 1-14 (2009).
- C. F. Francis, I. L. Kyratzis, and A. S. Best, Lithium-ion battery separators for ionic-liquid electrolytes: A review, Adv. Mater., 32, 1904205 (2020). https://doi.org/10.1002/adma.201904205
- M. Waqas, C. Tan, W. Lv, S. Ali, B. Boaten, W. Chen, Z. Wei, J. Chao Feng, J. Ahmed, J. B. Goodenough, and W. He, A highly-efficient composite separator with strong ligand interaction for high-temperature lithium-ion batteries, ChemElectroChem, 5, 2722-2728 (2018). https://doi.org/10.1002/celc.201800800
- M. Alireza, Z. Seyedeh, S. Mohammad, and M. Sharifzadeh, Mechanical engineering of solid oxide fuel cell systems: Geometric design, mechanical configuration, and thermal analysis. In: M. Sharifzadeh (ed.). Design and Operation of Solid Oxide Fuel Cells in Design and Operation of Solid Oxide Fuel Cells, 85-130, Academic Press, Cambridge, USA (2020).
- H. Liu, J. Xu, B. Guo, and X. He, Effect of Al2O3/SiO2 composite ceramic layers on performance of polypropylene separator for lithium-ion batteries, Ceram. Int., 40, 14105-14110 (2014). https://doi.org/10.1016/j.ceramint.2014.05.142
- Z. Zhang, W. Yuan, and L. Li, Enhanced wettability and thermal stability of nano-SiO2/poly(vinyl alcohol)-coated polypropylene composite separators for lithium-ion batteries, Particuology, 37, 91-98 (2018). https://doi.org/10.1016/j.partic.2017.10.001
- L. F. Feng, J. L. Shi, J. H. Jiang, H. Li, B. K. Zhu, and L. P. Zhu, Improving the wettability and thermal resistance of polypropylene separators with a thin inorganic-organic hybrid layer stabilized by polydopamine for lithium ion batteries, RSC Adv., 4, 22501-22508 (2014). https://doi.org/10.1039/c4ra01713g
- W. Chen, L. Shi, H. Zhou, J. Zhu, Z. Wag, X. Mao, M. Chi, L. Sun, and S. Yuan, Water-based organic-inorganic hybrid coating for a high-performance separator, ACS Sustain. Chem. Eng., 4, 3794-3802 (2016). https://doi.org/10.1021/acssuschemeng.6b00499
- X. Zuo, J. Wu, X. Ma, X. Deng, J. Cai, Q. Chen, J. Liu, and J. Nan, A poly(vinylidene fluoride)/ethyl cellulose and amino-functionalized nano-SiO2 composite coated separator for 5 V high-voltage lithium-ion batteries with enhanced performance, J. Power Sources., 407, 44-52 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.056
- S. Hu, S. Lin, Y. Tu, J. Hu, Y. Wu, G. Liu, F. Li, F. Yu, and T. Jiang, Novel aramid nanofiber-coated polypropylene separators for lithium ion batteries, J. Mater. Chem. A, 4, 3513-3526 (2016). https://doi.org/10.1039/C5TA08694A
- M. Liu, P. Zhang, L. Gou, Z. Hou, and B. Huang, Enhancement on the thermostability and wettability of lithium-ion batteries separator via surface chemical modification, Mater. Lett., 208, 98-101 (2017). https://doi.org/10.1016/j.matlet.2017.05.031
- A. Gupta and S. Sivaram, Separator membranes for lithium-sulfur batteries: design principles, structure, and performance, Energy Technol., 7, 1800819 (2019). https://doi.org/10.1002/ente.201800819
- G. Feng, Z. Li, L. Mi, J. Zheng, X. Feng, and W. Chen, Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries, J. Power Sources., 376, 177-183 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.086
- E. Shekarian, M. R. J. Nasr, T. Mohammadi, O. Bakhtiari, and M. Javanbakht, Enhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery, J. Nanostruct., 9, 736-750 (2019).
- Y. Xiang, W, Zhu, W. Qiu, W. Guo, J. Lei, D. Liu, D. Qu, Z. Xie, H. Tang, and J. Li, SnO2 functionalized polyethylene separator with enhanced thermal stability for high performance lithium ion battery, Chem. Eur. J., 3, 911-916 (2018).
- X. Niu, J. Li, G. Song, Y. Li and T. He, Evidence of high temperature stable performance of polyether ether ketone (PEEK) separator with sponge-structured in lithium-ion battery, Energy Mater., 57, 7042-7055 (2022).
- Y. Xiao, A. Fu, Y. Zou, L. Huang, H. Wang, Y. Su, and J. Zheng, High safety lithium-ion battery enabled by a thermal-induced shutdown separator, Chem. Eng. J., 438, 135550 (2022). https://doi.org/10.1016/j.cej.2022.135550
- H. Lee, H. Jeon, S. H. Gong, M. H. Ryou, and Y. M. Lee, A facile method to enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene separators, Appl. Surf. Sci., 427, 139-146 (2018). https://doi.org/10.1016/j.apsusc.2017.07.276
- R. S. Juang, C. H. Liang, W. C. Ma, C. Y. Tsai, and C. Huang, Low-pressure ethane/nitrogen gas mixture plasma surface modification effect on the wetting and electrochemical performance of polymeric separator for lithium-ion batteries, J. Taiwan Inst. Chem. Eng., 45, 3046-3051 (2014). https://doi.org/10.1016/j.jtice.2014.08.023
- R. Lee, C. Lim, M.-J. Kim, and Y.-S. Lee, Acetic acid gas adsorption characteristics of activated carbon fiber by plasma and direct gas fluorination, Appl. Chem. Eng., 32, 55-60 (2021). https://doi.org/10.14478/ACE.2020.1098
- E. J. Song, M.-J. Kim, J.-I. Han, Y. J. Choi, and Y.-S. Lee, Gas adsorption characteristics of by interaction between oxygen functional groups introduced on activated carbon fibers and acetic acid molecules, Appl. Chem. Eng., 30, 160-166 (2019) https://doi.org/10.14478/ACE.2018.1122
- S. Y. Jin, J. Manuel, X. Zhao, W. H. Park, and J. H. Ahn, Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery, J. Ind. Eng. Chem., 45, 15-21 (2017). https://doi.org/10.1016/j.jiec.2016.08.021
- X. Li, J. He, D. Wu, M. Zhang, J. Meng, and P. Ni, Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators, Electrochim. Acta, 167, 396-403 (2015). https://doi.org/10.1016/j.electacta.2015.03.188
- J. Fang, A. Kelarakis, Y. W. Lin, C. Y. Kang, M. H. Yang, C. L. Cheng, Y. Wang, E. P. Giannelis, and L. D. Tsai, Nanoparticlecoated separators for lithium-ion batteries with advanced electrochemical performance, Phys. Chem. Chem. Phys., 13, 14457-14461 (2011). https://doi.org/10.1039/c1cp22017a
- H. Jeon, S. Y. Jin, W. H. Park, H. Lee, H. T. Kim, M. H. Ryou, and Y. Lee, Plasma-assisted water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium metal secondary batteries, Electrochim. Acta, 212, 649-656 (2016) https://doi.org/10.1016/j.electacta.2016.06.172
- N. Sabetzadeh, C. Falamaki, R. Riahifar, M. S. Yaghmaee, and B. Raissi, Plasma treatment of polypropylene membranes coated with zeolite/organic binder layers: Assessment of separator performance in lithium-ion batteries, Solid State Ion., 363, 115589 (2021). https://doi.org/10.1016/j.ssi.2021.115589
- C. Li, H.-L. Li, C.-H. Li, Y.-S. Liu, Y.-C. Sung, and C. Huang, Effects of low-pressure nitrogen plasma treatment on the surface properties and electrochemical performance of the polyethylene separator used lithium-ion batteries, Jpn. J. Appl. Phys., 57, 01AB03-1 (2018). https://doi.org/10.7567/JJAP.57.01AB03
- H. S. Jeong and S. Y. Lee, Closely packed SiO2 nanoparticles/ poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries, J. Power Sources, 196, 6716-6722 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.037
- H. Liu, J. Xu, B. Guo, and X. He, Effect of SiO2 Content on performance of polypropylene separator for lithium-ion batteries, J. Appl. Polym. Sci., 131, 41156 (2014).
- W. K. Shin and D. W. Kim, High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries, J. Power Sources, 226, 54-60 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.082
- C. Shi, P. Zhang, L. Chen, P. Yang, and J. Zhao, Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries, J. Power Sources, 270, 547-553 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.142
- Z. Wang, H. Zhu, L. Yang, X. Wang, Z. Liu, and Q. Chen, Plasma modified polypropylene membranes as the lithium-ion battery separators, Plasma Sci. Technol., 18, 424-429 (2016). https://doi.org/10.1088/1009-0630/18/4/16
- M. Han, D. W. Kim, and Y. C. Kim, Charged polymer-coated separators by atmospheric plasma-induced grafting for lithium-ion batteries, ACS Appl. Mater. Interfaces, 8, 26073-26081 (2016). https://doi.org/10.1021/acsami.6b08781
- Z. Wang, F. Guo, C. Chen, L. Shi, S. Yuan, L. Sun, and J. Zhu, Self-assembly of Pei/SiO2 on polyethylene separators for li-ion batteries with enhanced rate capability, ACS Appl. Mater. Interfaces, 7, 3314-3322 (2015). https://doi.org/10.1021/am508149n