DOI QR코드

DOI QR Code

Surface Modification Technology and Research Trends of Separators for Lithium-Ion Batteries

리튬이온 전지용 분리막의 표면 개질 기술 및 연구 동향

  • Ha, Seongmin (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Kim, Daesup (Department of Applied Chemistry and Chemical Engineering, Chungnam National University) ;
  • Kwak, Cheol Hwan (Institute of Carbon Fusion Technology (InCFT), Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
  • 하성민 (충남대학교 응용화학공학과) ;
  • 김대섭 (충남대학교 응용화학공학과) ;
  • 곽철환 (충남대학교 탄소융복합기술연구소) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2022.06.11
  • Accepted : 2022.07.27
  • Published : 2022.08.10

Abstract

Lithium-ion batteries (LIBs) are considered promising energy storage devices with good performance such as high energy density, slow self-discharge rate, high rate charge capacity, and long battery life. However, the application of these LIBs in the high-energy density electric vehicle and large device industries poses a major safety problem. In order to solve this problem, developing a material having high thermal stability and intrinsic safety is the ultimate solution for improving the stability and electrochemical performance of LIBs. This review introduced a surface modification technology of a separator to overcome the stability problem of a commercial separator, and summarized and summarized the research trends using the modified separator for a lithium-ion battery. Based on this, the future prospects for the separator development by surface modification were discussed.

리튬이온 전지(lithium-ion batteries, LIBs)는 높은 에너지 밀도, 느린 자가방전율, 고율 충전 능력 및 긴 배터리 수명 등의 좋은 성능으로 촉망받는 에너지 저장 장치로 꼽힌다. 그러나 고에너지 밀도의 전기자동차 및 대형 디바이스 산업에서 이러한 LIBs의 적용은 큰 안전 문제를 일으키고 있다. 이러한 문제를 해결하기 위하여 열적 안정성 및 내재적 안전성이 높은 재료를 개발하는 것이 LIBs의 안정성 및 전기화학적 성능을 향상시키는 궁극적인 해결방법이다. 본 총설에서는 상용 분리막의 안정성 문제 극복을 위한 분리막의 표면 개질 기술을 소개하였으며 이를 이용하여 개질된 리튬이온 전지용 분리막을 활용한 연구 동향을 요약, 정리하였다. 또한 이를 기반으로 표면 개질에 따른 분리막에 대한 향후 전망을 논의하였다.

Keywords

Acknowledgement

이 연구는 산업통상자원부의 2022년 "바인더 및 코팅용 피치를 활용한 실리콘산화물/인조흑연 복합체 개발" 지원 사업으로 수행되었으며, 이에 감사드립니다.

References

  1. Q. Cheng, W. He, X. Zhang, M. Li, and X. Song, Recent advances in composite membranes modified with inorganic nanoparticles for high-performance lithium ion batteries, RSC Adv., 6, 10250-10265 (2016). https://doi.org/10.1039/C5RA21670B
  2. M. F. Lagadec, R. Zahn, and V. Wood, Characterization and performance evaluation of lithium-ion battery separators, Nat. Energy, 4, 16-25 (2018). https://doi.org/10.1038/s41560-018-0295-9
  3. X. Yin, Y. Zhang, J.-J. Yuan, B.-K. Zhu, L.-P. Zhu, Y.-Z. Song, and C.-C. Sun, Tannic acid/polyethyleneimine-decorated polypropylene separators for Li-Ion batteries and the role of the interfaces between separator and electrolyte, Electrochim. Acta, 275, 25-31 (2018). https://doi.org/10.1016/j.electacta.2018.03.099
  4. M. Waqas, S. Ali, W. Lv, D. Chen, B. Boateng, and W. He, High-performance PE-BN/PVDF-HFP bilayer separator for lithium-ion batteries, Adv. Mater. Interfaces, 6, 1801330 (2019). https://doi.org/10.1002/admi.201801330
  5. J. Zhang, L. Yue, Q. Kong, Z. Liu, X. Zhou, C. Zhang, Q. Xu, B. Zhang, G. Ding, B. Qin, Y. Duan, Q. Wang, J. Yao, G. Cui, and L. Chen, Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery, Sci. Rep., 4, 1-8 (2014).
  6. H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci., 7, 3857-3886 (2014). https://doi.org/10.1039/C4EE01432D
  7. J. Hao, G. Lei, Z. Li, L. Wu, Q. Xiao, and L. Wang, A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery, J. Membr. Sci., 428, 11-16 (2013). https://doi.org/10.1016/j.memsci.2012.09.058
  8. C. J. Orendorff, T. N. Lambert, C. A. Chavez, M. Bencomo, and K. R. Fenton, Polyester separators for lithium-ion cells: Improving thermal stability and abuse tolerance, Adv. Energy Mater., 3, 314-320 (2013). https://doi.org/10.1002/aenm.201200292
  9. X. Zhu, X. Jiang, X. Ai, H. Yang, and Y. Cao, A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries, ACS Appl. Mater. Interfaces, 7, 24119-24126 (2015). https://doi.org/10.1021/acsami.5b07230
  10. J. Shi, Y. Xia, Z. Yuan, H. Hu, X. Li, H. Zhang, and Z. Liu, Silencing NADPH-cytochrome P450 reductase results in reduced acaricide resistance in Tetranychus cinnabarinus (Boisduval), Sci. Rep., 5, 1-11 (2015).
  11. R. Luo, C. Wang, Z. Zhang, W. Lv, Z. Wei, Y. Zhang, X. Luo, and W. He, Three-dimensional nanoporous polyethylene-reinforced PVDF-HFP separator enabled by dual-solvent hierarchical gas liberation for ultrahigh-rate lithium ion batteries, ACS Appl. Energy Mater., 1, 921-927 (2018). https://doi.org/10.1021/acsaem.7b00091
  12. H. Wang and H. Gao, A sandwich-like composite nonwoven separator for Li-ion batteries, Electrochim. Acta, 215, 525-534 (2016). https://doi.org/10.1016/j.electacta.2016.08.039
  13. R. S. Baldwin, M. Guzik, and M. Shierski, Properties and performance attributes of novel Co-extruded polyolefin battery separator materials part 1: Mechanical properties, NASA Center for AeroSpace Information, 216979, 1-14 (2009).
  14. C. F. Francis, I. L. Kyratzis, and A. S. Best, Lithium-ion battery separators for ionic-liquid electrolytes: A review, Adv. Mater., 32, 1904205 (2020). https://doi.org/10.1002/adma.201904205
  15. M. Waqas, C. Tan, W. Lv, S. Ali, B. Boaten, W. Chen, Z. Wei, J. Chao Feng, J. Ahmed, J. B. Goodenough, and W. He, A highly-efficient composite separator with strong ligand interaction for high-temperature lithium-ion batteries, ChemElectroChem, 5, 2722-2728 (2018). https://doi.org/10.1002/celc.201800800
  16. M. Alireza, Z. Seyedeh, S. Mohammad, and M. Sharifzadeh, Mechanical engineering of solid oxide fuel cell systems: Geometric design, mechanical configuration, and thermal analysis. In: M. Sharifzadeh (ed.). Design and Operation of Solid Oxide Fuel Cells in Design and Operation of Solid Oxide Fuel Cells, 85-130, Academic Press, Cambridge, USA (2020).
  17. H. Liu, J. Xu, B. Guo, and X. He, Effect of Al2O3/SiO2 composite ceramic layers on performance of polypropylene separator for lithium-ion batteries, Ceram. Int., 40, 14105-14110 (2014). https://doi.org/10.1016/j.ceramint.2014.05.142
  18. Z. Zhang, W. Yuan, and L. Li, Enhanced wettability and thermal stability of nano-SiO2/poly(vinyl alcohol)-coated polypropylene composite separators for lithium-ion batteries, Particuology, 37, 91-98 (2018). https://doi.org/10.1016/j.partic.2017.10.001
  19. L. F. Feng, J. L. Shi, J. H. Jiang, H. Li, B. K. Zhu, and L. P. Zhu, Improving the wettability and thermal resistance of polypropylene separators with a thin inorganic-organic hybrid layer stabilized by polydopamine for lithium ion batteries, RSC Adv., 4, 22501-22508 (2014). https://doi.org/10.1039/c4ra01713g
  20. W. Chen, L. Shi, H. Zhou, J. Zhu, Z. Wag, X. Mao, M. Chi, L. Sun, and S. Yuan, Water-based organic-inorganic hybrid coating for a high-performance separator, ACS Sustain. Chem. Eng., 4, 3794-3802 (2016). https://doi.org/10.1021/acssuschemeng.6b00499
  21. X. Zuo, J. Wu, X. Ma, X. Deng, J. Cai, Q. Chen, J. Liu, and J. Nan, A poly(vinylidene fluoride)/ethyl cellulose and amino-functionalized nano-SiO2 composite coated separator for 5 V high-voltage lithium-ion batteries with enhanced performance, J. Power Sources., 407, 44-52 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.056
  22. S. Hu, S. Lin, Y. Tu, J. Hu, Y. Wu, G. Liu, F. Li, F. Yu, and T. Jiang, Novel aramid nanofiber-coated polypropylene separators for lithium ion batteries, J. Mater. Chem. A, 4, 3513-3526 (2016). https://doi.org/10.1039/C5TA08694A
  23. M. Liu, P. Zhang, L. Gou, Z. Hou, and B. Huang, Enhancement on the thermostability and wettability of lithium-ion batteries separator via surface chemical modification, Mater. Lett., 208, 98-101 (2017). https://doi.org/10.1016/j.matlet.2017.05.031
  24. A. Gupta and S. Sivaram, Separator membranes for lithium-sulfur batteries: design principles, structure, and performance, Energy Technol., 7, 1800819 (2019). https://doi.org/10.1002/ente.201800819
  25. G. Feng, Z. Li, L. Mi, J. Zheng, X. Feng, and W. Chen, Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries, J. Power Sources., 376, 177-183 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.086
  26. E. Shekarian, M. R. J. Nasr, T. Mohammadi, O. Bakhtiari, and M. Javanbakht, Enhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery, J. Nanostruct., 9, 736-750 (2019).
  27. Y. Xiang, W, Zhu, W. Qiu, W. Guo, J. Lei, D. Liu, D. Qu, Z. Xie, H. Tang, and J. Li, SnO2 functionalized polyethylene separator with enhanced thermal stability for high performance lithium ion battery, Chem. Eur. J., 3, 911-916 (2018).
  28. X. Niu, J. Li, G. Song, Y. Li and T. He, Evidence of high temperature stable performance of polyether ether ketone (PEEK) separator with sponge-structured in lithium-ion battery, Energy Mater., 57, 7042-7055 (2022).
  29. Y. Xiao, A. Fu, Y. Zou, L. Huang, H. Wang, Y. Su, and J. Zheng, High safety lithium-ion battery enabled by a thermal-induced shutdown separator, Chem. Eng. J., 438, 135550 (2022). https://doi.org/10.1016/j.cej.2022.135550
  30. H. Lee, H. Jeon, S. H. Gong, M. H. Ryou, and Y. M. Lee, A facile method to enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene separators, Appl. Surf. Sci., 427, 139-146 (2018). https://doi.org/10.1016/j.apsusc.2017.07.276
  31. R. S. Juang, C. H. Liang, W. C. Ma, C. Y. Tsai, and C. Huang, Low-pressure ethane/nitrogen gas mixture plasma surface modification effect on the wetting and electrochemical performance of polymeric separator for lithium-ion batteries, J. Taiwan Inst. Chem. Eng., 45, 3046-3051 (2014). https://doi.org/10.1016/j.jtice.2014.08.023
  32. R. Lee, C. Lim, M.-J. Kim, and Y.-S. Lee, Acetic acid gas adsorption characteristics of activated carbon fiber by plasma and direct gas fluorination, Appl. Chem. Eng., 32, 55-60 (2021). https://doi.org/10.14478/ACE.2020.1098
  33. E. J. Song, M.-J. Kim, J.-I. Han, Y. J. Choi, and Y.-S. Lee, Gas adsorption characteristics of by interaction between oxygen functional groups introduced on activated carbon fibers and acetic acid molecules, Appl. Chem. Eng., 30, 160-166 (2019) https://doi.org/10.14478/ACE.2018.1122
  34. S. Y. Jin, J. Manuel, X. Zhao, W. H. Park, and J. H. Ahn, Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery, J. Ind. Eng. Chem., 45, 15-21 (2017). https://doi.org/10.1016/j.jiec.2016.08.021
  35. X. Li, J. He, D. Wu, M. Zhang, J. Meng, and P. Ni, Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators, Electrochim. Acta, 167, 396-403 (2015). https://doi.org/10.1016/j.electacta.2015.03.188
  36. J. Fang, A. Kelarakis, Y. W. Lin, C. Y. Kang, M. H. Yang, C. L. Cheng, Y. Wang, E. P. Giannelis, and L. D. Tsai, Nanoparticlecoated separators for lithium-ion batteries with advanced electrochemical performance, Phys. Chem. Chem. Phys., 13, 14457-14461 (2011). https://doi.org/10.1039/c1cp22017a
  37. H. Jeon, S. Y. Jin, W. H. Park, H. Lee, H. T. Kim, M. H. Ryou, and Y. Lee, Plasma-assisted water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium metal secondary batteries, Electrochim. Acta, 212, 649-656 (2016) https://doi.org/10.1016/j.electacta.2016.06.172
  38. N. Sabetzadeh, C. Falamaki, R. Riahifar, M. S. Yaghmaee, and B. Raissi, Plasma treatment of polypropylene membranes coated with zeolite/organic binder layers: Assessment of separator performance in lithium-ion batteries, Solid State Ion., 363, 115589 (2021). https://doi.org/10.1016/j.ssi.2021.115589
  39. C. Li, H.-L. Li, C.-H. Li, Y.-S. Liu, Y.-C. Sung, and C. Huang, Effects of low-pressure nitrogen plasma treatment on the surface properties and electrochemical performance of the polyethylene separator used lithium-ion batteries, Jpn. J. Appl. Phys., 57, 01AB03-1 (2018). https://doi.org/10.7567/JJAP.57.01AB03
  40. H. S. Jeong and S. Y. Lee, Closely packed SiO2 nanoparticles/ poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries, J. Power Sources, 196, 6716-6722 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.037
  41. H. Liu, J. Xu, B. Guo, and X. He, Effect of SiO2 Content on performance of polypropylene separator for lithium-ion batteries, J. Appl. Polym. Sci., 131, 41156 (2014).
  42. W. K. Shin and D. W. Kim, High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries, J. Power Sources, 226, 54-60 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.082
  43. C. Shi, P. Zhang, L. Chen, P. Yang, and J. Zhao, Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries, J. Power Sources, 270, 547-553 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.142
  44. Z. Wang, H. Zhu, L. Yang, X. Wang, Z. Liu, and Q. Chen, Plasma modified polypropylene membranes as the lithium-ion battery separators, Plasma Sci. Technol., 18, 424-429 (2016). https://doi.org/10.1088/1009-0630/18/4/16
  45. M. Han, D. W. Kim, and Y. C. Kim, Charged polymer-coated separators by atmospheric plasma-induced grafting for lithium-ion batteries, ACS Appl. Mater. Interfaces, 8, 26073-26081 (2016). https://doi.org/10.1021/acsami.6b08781
  46. Z. Wang, F. Guo, C. Chen, L. Shi, S. Yuan, L. Sun, and J. Zhu, Self-assembly of Pei/SiO2 on polyethylene separators for li-ion batteries with enhanced rate capability, ACS Appl. Mater. Interfaces, 7, 3314-3322 (2015). https://doi.org/10.1021/am508149n