DOI QR코드

DOI QR Code

A Study of the Optimization of the MOF-5 Synthesis Process using Design of Experiments

실험계획법을 이용한 MOF-5 합성공정 최적화 연구

  • Lee, Min Hyung (Department of Energy & Chemical Engineering, Graduate School of Convergence Science, Seoul National University of Science and Technology) ;
  • Lee, Sangmin (Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Yoo, Kye Sang (Department of Energy & Chemical Engineering, Graduate School of Convergence Science, Seoul National University of Science and Technology)
  • 이민형 (서울과학기술대학교 융합대학원 에너지화학공학과) ;
  • 이상민 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 융합대학원 에너지화학공학과)
  • Received : 2022.06.19
  • Accepted : 2022.07.15
  • Published : 2022.08.10

Abstract

Statistical design of experiments was used to optimize the MOF-5 synthesis process. A mixture design was employed to optimize precursor concentration. The optimal composition of three chemical materials, terephthalic acid, zinc acetate dihydrate, and N,N-dimethylformamide for MOF-5 synthesis was determined by extreme vertices design methods as follows; 1 mol : 2.7 mol : 40 mol. A multilevel factorial design was selected to screen the significance of synthesis reaction conditions such as temperature, time, and stirring speed. Statistical analysis results suggested excluding stirring speed from further investigation. Using a central composition design, the synthesis time and temperature were optimized. The quadratic model equation was derived from 13 synthesis experiments. The model predicted that MOF-5 synthesized at 119 ℃ for 10.4 h had the highest crystallinity.

실험계획법을 이용하여 MOF-5 합성공정의 최적화에 대한 연구를 수행하였다. 먼저 전구체의 농도를 최적화 하기 위하여 혼합물 설계법을 이용하였다. 합성에 사용되는 세 가지 전구체인 terephthalic acid, zinc acetate dihydrate, N,N-dimethylformamide의 농도비를 extreme vertices design methods로 최적화 하였다. MOF-5 합성을 위한 최적의 농도는 1 mol : 2.7 mol : 40 mol로 예측되었다. 이후, 온도, 시간 및 교반 속도와 같은 합성 반응 조건이 합성에 미치는 영향을 분석하기 위해 다단계 요인 설계법을 사용하였다. 수행된 통계 분석에 따라 교반 속도는 후속 연구에서 제외되었다. 합성시간과 온도를 고려한 합성 공정 최적화는 중앙 조성 설계법을 이용하였다. 13번의 합성 실험을 통해 도출된 2차 모델 방정식을 이용하여 결과를 추정하였다. 설계에 사용된 모델에 의하면 119 ℃ 및 10.4 h 조건에서 합성된 MOF-5가 최대의 결정화도를 가지는 것으로 예측되었다.

Keywords

Acknowledgement

This study was supported by the Research Program funded by the SeoulTech(Seoul National University of Science and Technology)

References

  1. M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O'Keeffe, and O. M. Yaghi, Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks, Acc. Chem. Res., 34, 319-330 (2001). https://doi.org/10.1021/ar000034b
  2. M. Eddaoudi, J. Kim, N. L. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, and O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295, 469-472 (2002). https://doi.org/10.1126/science.1067208
  3. N. W. Ockwig, O. Delgado-Friedrichs, M. O'Keeffe, and O. M. Yaghi, Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks, Acc. Chem. Res., 38, 176-782 (2005). https://doi.org/10.1021/ar020022l
  4. J. Kim, B. Chen, T. M. Reineke, H. Li, M. Eddaoudi, D. B. Moler, M. O'Keeffe, and O. M. Yaghi, Assembly of metal-organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures, J. Am. Chem. Soc., 123, 8239-8247 (2001). https://doi.org/10.1021/ja010825o
  5. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, Reticular synthesis and the design of new materials, Nature, 423, 705-714 (2003). https://doi.org/10.1038/nature01650
  6. M. J. Rosseinsky, Recent developments in metal-organic framework chemistry: Design, discovery, permanent porosity and flexibility, Microporous Mesoporous Mater., 73, 15-30 (2004). https://doi.org/10.1016/j.micromeso.2003.05.001
  7. W. Mori, S. Takamizawa, C. N. Kato, T. Ohmura, and T. Sato, Molecular-level design of efficient microporous materials containing metal carboxylates: Inclusion complex formation with organic polymer, gas-occlusion properties, and catalytic activities for hydrogenation of olefins, Microporous Mesoporous Mater., 73, 31-46 (2004). https://doi.org/10.1016/j.micromeso.2004.02.019
  8. A. C. Sudik, A. R. Millward, N. W. Ockwig, A. P. Cote, J. Kim, and O. M. Yaghi, Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra, J. Am. Chem. Soc., 127, 7110-7118 (2005). https://doi.org/10.1021/ja042802q
  9. R. Q. Snurr, J. T. Hupp, and S. T. Nguyen, Prospects for nanoporous metal-organic materials in advanced separations processes, AIChE J., 50, 1090-1095 (2004). https://doi.org/10.1002/aic.10101
  10. J. L. C. Rowsell and O. M. Yaghi, Strategies for hydrogen storage in metal-organic frameworks, Angew. Chem. Int. Ed., 44, 4670-4679 (2005). https://doi.org/10.1002/anie.200462786
  11. A. R. Millward and O. M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc., 127, 17998-17999 (2005). https://doi.org/10.1021/ja0570032
  12. S. Bordiga, C. Lamberti, G. Ricchiardi, L. Regli, F. Bonino, A. Damin, K. P. Lillerud, M. Bjorgen, and A. Zecchina, Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour, Chem. Commun., 2300-23001 (2004).
  13. R. Sabouni, H. Kazemian, and S. Rohani, A novel combined manufacturing technique for rapid production of IRMOF-1 using ultrasound and microwave energies, Chem. Eng. J., 165, 966-973 (2010). https://doi.org/10.1016/j.cej.2010.09.036
  14. M. Ma, D. Zacher, X. Zhang, R. A. Fischer, and N. Metzler-Nolte, A method for the preparation of highly porous, nanosized crystals of isoreticular metal-organic frameworks, Cryst. Growth Des., 11, 185-189 (2011). https://doi.org/10.1021/cg101130m
  15. Y. Liu, Z. Ng, E. A. Khan, H. K. Jeong, C. B. Ching, and Z. Lai, Synthesis of continuous MOF-5 membranes on porous α-alumina substrates, Microporous Mesoporous Mater., 118, 296-301 (2009). https://doi.org/10.1016/j.micromeso.2008.08.054
  16. J. Antony, Design of Experiments for Engineers and Scientists, 1st ed., 6-16, Elsevier, Amsterdam, Nederland (2003).
  17. D. C. Montgomery, Design and Analysis of Experiments, 10th ed., 1-20, Wiley, New York, USA (2020).
  18. H. M. Kareem and R. T. Alrubaye, Synthesis and characterization of metal organic frameworks for gas storage, IOP Conf. Ser.: Mater. Sci. Eng., 518, 062013 (2019). https://doi.org/10.1088/1757-899X/518/6/062013