DOI QR코드

DOI QR Code

Biomass Gasification for Fuel Cell Combined-Heat-and-Power Systems

바이오매스 활용 연료전지 열병합발전시스템을 위한 연료화 공정

  • Hong, Gi Hoon (Plant Process Development Center, Institute for Advanced Engineering) ;
  • Uhm, Sunghyun (Plant Process Development Center, Institute for Advanced Engineering) ;
  • Hwang, Sangyeon (Plant Process Development Center, Institute for Advanced Engineering)
  • 홍기훈 (고등기술연구원 플랜트공정개발센터) ;
  • 엄성현 (고등기술연구원 플랜트공정개발센터) ;
  • 황상연 (고등기술연구원 플랜트공정개발센터)
  • Received : 2022.07.04
  • Accepted : 2022.07.18
  • Published : 2022.08.10

Abstract

In the agricultural sector where the fossil fuels are primary energy resources, the current global energy crisis together with the dissemination of smart farming has led to the new phase of energy pattern in which the electricity demand is growing faster particularly. Therefore, the fuel cell combined heat and power system, coupling the environmentally friendly fuel cell to biomass treatment and feeding, can be regarded as the most effective energy system in agriculture. In this mini-review, we discuss the R&D trend of the fuel cell combined heat and power system aimed at utilizing agricultural by-products as fuels and highlight the issues in terms of the process configuration and interconnection of individual processes.

화석연료 사용 비중이 큰 농업분야에서는 최근 불안한 국제정제와 맞물린 에너지 가격 상승과 활발한 스마트팜 보급으로 전력사용량까지 증가하는 에너지 사용 패턴 변화로 새로운 국면을 맞고 있다. 따라서 친환경 분산형 전원으로 연료전지를 이용하며, 바이오매스를 직접 연료로 사용할 수 있는 연료전지 열병합발전 시스템은 농가에 열 및 전기에너지를 동시에 공급할 수 있는 효과적인 에너지시스템으로 인식되고 있다. 본 총설 논문에서는 바이오매스, 특히 농업부산물을 연료로 활용하기 위한 연료전지 기반의 열병합발전 시스템에 대한 공정 구성과 기술적 동향을 제시하고, 통합 연계공정 설계 시 고려해야 할 부분들을 논의하고자 한다.

Keywords

Acknowledgement

본 연구는 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었습니다. (No. 421037031HD020)

References

  1. Ministry of Foreign Affairs, Climate Change, https://www.mofa.go.kr/eng/wpge/m_5655/contents.do (2022.06.16.)
  2. D. G. Hong, National Greenhouse Gas Inventory Report of Korea 2019, Ministry of Environment, Greenhouse Gas Inventory and Research Center, 4-11 (2020).
  3. J. G. Kim, Korea Electric Power Corporation, Statistics of Electric Power in Korea 2020, No. 90, 26-27 (2021).
  4. W.-H. Chen, J. Peng, and X.T. BI, A state-of-art review of biomass torrefaction, densification and applications, Renew. Sust. Energ. Rev., 44, 847-866 (2015). https://doi.org/10.1016/j.rser.2014.12.039
  5. R.O. Gadsboll, J. Thomsen, C. Bang-Moller, and J. Ahrenfeldt, Solid oxide fuel cells powered by biomass gasification for high efficiency power generation, Energy, 131, 198-206 (2017). https://doi.org/10.1016/j.energy.2017.05.044
  6. Z. Wu, P. Zhu, J. Yao, S. Zhang, J. Ren, F. Yang, and Z. Zhang, Combined biomass gasification, SOFC, IC engine, and waste heat recovery system for power and heat generation: Energy, exergy, exergoeconomic, environmental (4E) evaluations, Appl. Energy, 279, 115794 (2020). https://doi.org/10.1016/j.apenergy.2020.115794
  7. A. Arsalis, M. P. Nielsen, and S. K. Kaer, Application of an improved operational strategy on a PBI fuel cell-based residential system for Danish single-family households, Appl. Therm. Eng., 50, 704-713 (2013). https://doi.org/10.1016/j.applthermaleng.2012.07.025
  8. R. J. Braun, S. A. Klein, and D. T. Reindl, Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications, J. Power Sources, 158, 1290-1305 (2006). https://doi.org/10.1016/j.jpowsour.2005.10.064
  9. V. Liso, Y. Zhao, N. Brandon, M. P. Nielsen, and S. K. Kaer, Analysis of the impact of heat-to-power ratio for a SOFC-based mCHP system for residential application under different climate regions in Europe, Int. J. Hydrog. Energy, 36, 13715-13726 (2011). https://doi.org/10.1016/j.ijhydene.2011.07.086
  10. A. R. Korsgaard, M. P. Nielsen, and S. K. Kaer, Part one: A novel model of HTPEM-based micro-combined heat and power fuel cell system, Int. J. Hydrog. Energy, 33, 1909-1920 (2008). https://doi.org/10.1016/j.ijhydene.2008.01.009
  11. I. Verhaert, G. Mulder, and M. D. Paepe, Evaluation of an alkaline fuel cell system as a micro-CHP, Energy Convers. Manag., 126, 434-445 (2016). https://doi.org/10.1016/j.enconman.2016.07.058
  12. E. Jannelli, M. Minutillo, and A. Perna, Analyzing micro-cogeneration systems based on LT-PEMFC and HT-PEMFC by energy balances, Appl. Energy, 108, 82-91 (2013). https://doi.org/10.1016/j.apenergy.2013.02.067
  13. A. R. Korsgaard, M. P. Nielsen, and S. K. Kaer, Part two: Control of a novel HTPEM-based micro combined heat and power fuel cell system, Int. J. Hydrog. Energy, 33, 1921-1931 (2008). https://doi.org/10.1016/j.ijhydene.2008.01.008
  14. A. Arsalis and M. P. S. K. Kaer, Modeling and off-design performance of a 1 kWe HT-PEMFC (high temperature-proton exchange membrane fuel cell)-based residential micro-CHP (combined-heatand-power) system for Danish single-family households, Energy, 36, 993-1002 (2011). https://doi.org/10.1016/j.energy.2010.12.009
  15. A. Adam, E. S. Fraga, and D. J. L. Brett, Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration, Appl. Energy, 138, 685-694 (2015). https://doi.org/10.1016/j.apenergy.2014.11.005
  16. J. Kupecki, Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME, Int. J. Hydrog. Energy, 40, 12009- 12022 (2015). https://doi.org/10.1016/j.ijhydene.2015.06.031
  17. P. Kazempoor, V. Dorer, and F. Ommi, Modelling and performance evaluation of solid oxide fuel cell for building integrated Coand polygeneration, Fuel Cells, 10, 1074-1094 (2010). https://doi.org/10.1002/fuce.200900082
  18. A. Arsalis, A comprehensive review of fuel cell-based micro-combined-heat-and-power systems, Renew. Sust. Energ. Rev., 105, 391-414 (2019). https://doi.org/10.1016/j.rser.2019.02.013
  19. P. J. Van Soest, Symposium on nutrition and forage and pastures: New chemical procedures for evaluating forages, J. Anim. Sci., 23, 838-845 (1964). https://doi.org/10.2527/jas1964.233838x
  20. D. Mohan, C. U. Pittman Jr., and P. H. Steele, Pyrolysis of wood/biomass for Bio-oil: A critical review, Energy Fuels, 20, 848-889 (2006). https://doi.org/10.1021/ef0502397
  21. M. Sami, K. Annamalai, and M. Wooldridge, Co-firing of coal and biomass fuel blends, Prog. Energy Combust. Sci., 27, 171-214 (2001). https://doi.org/10.1016/S0360-1285(00)00020-4
  22. W.-H. Chen and P.-C. Kuo, Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass, Energy, 36, 803-811 (2011). https://doi.org/10.1016/j.energy.2010.12.036
  23. A. Ohliger, M. Forster, and R. Kneer, Torrefaction of beechwood: A parametric study including heat of reaction and grindability, Fuel, 104, 607-613 (2013). https://doi.org/10.1016/j.fuel.2012.06.112
  24. M. Phanphanich and S. Mani, Impact of torrefaction on the grindability and fuel characteristics of forest biomass, Bioresour. Technol., 102, 1246-1253 (2011). https://doi.org/10.1016/j.biortech.2010.08.028
  25. J. Wannapeera, B. Fungtammasan, and N. Worasuwannarak, Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass, J. Anal. Appl. Pyrolysis, 92, 99-105 (2011). https://doi.org/10.1016/j.jaap.2011.04.010
  26. B. Arias, C. Pevida, J. Fermoso, M. G. Plaza, F. Rubiera, and J. J. Pis, Influence of torrefaction on the grindability and reactivity of woody biomass, Fuel Process. Technol., 89, 169-175 (2008). https://doi.org/10.1016/j.fuproc.2007.09.002
  27. Z. Yao, S. You, T. Ge, and C-H. Wang, Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation, Appl. Energy, 209, 43-55 (2018). https://doi.org/10.1016/j.apenergy.2017.10.077
  28. J. A. Ruiz, M. C. Juarez, M. P. Morales, P. Munoz, and M. A. Mendivil, Biomass gasification for electricity generation: Review of current technology barriers, Renew. Sust. Energ. Rev., 18, 174-183 (2013). https://doi.org/10.1016/j.rser.2012.10.021
  29. R. Warnecke, Gasification of biomass: comparison of fixed bed and fluidized bed gasifier, Biomass Bioenergy, 18, 489-497 (2000). https://doi.org/10.1016/S0961-9534(00)00009-X
  30. R. Thomson, P. Kwong, E. Ahmad, and K. D. P. Nigam, Clean syngas from small commercial biomass gasifiers; a review of gasifier development, recent advances and performance evaluation, Int. J. Hydrog. Energy, 45, 21087-21111 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.160
  31. F. Pinto and R. N. Andre, The role of gasification in achieving almost zero emissions in energy production from coal. In: R. Kumar (ed.). Fossil Fuels: Sources, Environmental Concerns and Waste Management Practices, 145-198, Nova Science Publishers, NY, USA (2013).
  32. N.-H. An, S.-M. Lee, J.-R. Cho, and C.-R. Lee, Estimation of agricultural by-products and investigation on nutrient contents for alternatives of inported oil-cakes, J. Korea Org. Resour. Recycl. Assoc., 27, 71-81 (2019).
  33. A. Paethanom, S. Nakahara, M. Kobayashi, and P. Prawisudha, Performance of tar removal by absorption and adsorption for biomass gasification, Fuel Process. Technol., 104, 144-154 (2012). https://doi.org/10.1016/j.fuproc.2012.05.006
  34. G. Akay, C. A. Jordan, and A. H. Mohamed, Syngas cleaning with nano-structured micro-porous ion exchange polymers in biomass gasification using a novel downdraft gasifier, J. Energy Chem., 22, 426-435 (2013). https://doi.org/10.1016/s2095-4956(13)60056-x
  35. M. Asafullah, Biomass gasification gas cleaning for downstream applications: A comparative critical review, Renew. Sust. Energ. Rev., 40, 118-132 (2014). https://doi.org/10.1016/j.rser.2014.07.132