과제정보
This research was supported by Halla University academic research fund, 2022.
참고문헌
- B. Yogeswari, R. Kanakaraju, S. Boopathi, and P. Kolandaivel, Combined theorentical studies on solvation and hydrogen bond interactions in glycine tripeptide, Mol. Simul., 40, 942-958 (2013). https://doi.org/10.1080/08927022.2013.828837
- V. Parchansky, J. Kapitan, J. Kaminsky, J. Sebestick, and P. Bour, Ramachandran plot for alanine dipeptide as determined from Raman optical activity. J. Phys. Chem. Lett., 4, 2763-2768 (2013). https://doi.org/10.1021/jz401366j
- S. Marqusee, V. H. Robbins, and R. L. Baldwin, Unusually stable helix formation in short alanine-based peptides, Proc. Natl. Acad. Sci., USA, 86, 5286-5290 (1989). https://doi.org/10.1073/pnas.86.14.5286
- F. Eker, X. Cao, L. Nafie, and R. Schweitzer-Stenner, Tripeptides adopt stable structures in water. A combined polarized visible Raman, FTIR, and VCD spectroscopy study, J. Am. Chem. Soc., 124, 14330-14341 (2002). https://doi.org/10.1021/ja027381w
- F. Eker, K. Griebenow, and R. Schweitzer-Stenner, Stable conformation of tripeptides in aqueous solution studied by UV circular dichroism spectroscopy, J. Am. Chem. Soc., 125, 8178-8185 (2003). https://doi.org/10.1021/ja034625j
- Z. Shi, C. A. Olson, G. D. Rose, R. L. Baldwin, and N. R. Kallenbach, Polyproline II structure in a sequence of seven alanine residues, Proc. Natl. Acad. Sci., USA, 99, 9190-9195 (2002). https://doi.org/10.1073/pnas.112193999
- S. Woutersen and P. Hamm, Structure determination of trialanine in water using polarization sensitive two-dimensional vibrational spectroscopy, J. Phys. Chem. B, 104, 11316-11320 (2000). https://doi.org/10.1021/jp001546a
- S. Woutersen, R. Pfister, P. Hamm, Y. Mu, D. S. Kosov, and G. Stock, Peptide conformational heterogeneity revealed from nonlinear vibrational spectroscopy and molecular-dynamics simulations, J. Chem. Phys., 117, 6833-6840 (2002). https://doi.org/10.1063/1.1506151
- J. Graf, P. H. Nguyen, G. Stock, and H. Schwalbe, Structure and dynamics of the homologous series of alanine peptides: A joint molecular dynamics/NMR study, J. Am. Chem. Soc., 129, 1179- 1189 (2007). https://doi.org/10.1021/ja0660406
- Y. Mu, D. S. Kosov, and G. Stock, Conformational dynamics of trialanine in water. 2. Comparison of AMBER, CHARMM, GROMOS, and OPLS force fields to NMR and infrared experiments, J. Phys. Chem. B, 107, 5064-5073 (2003). https://doi.org/10.1021/jp022445a
- A. Kentsis, M. Mezei, T. Gindin, and R. Osman, Unfolded state of polyalanine is a segmented polyproline II helix, Proteins: Struct. Funct. Bioinf., 55, 493-501 (2004). https://doi.org/10.1002/prot.20051
- P. Bour, J. Kubelka, and T. A. Keiderling, Ab initio quantum mechanical models of peptide helices and their vibrational spectra, Biopolymers., 65, 45-49 (2002). https://doi.org/10.1002/bip.10224
- M. Kobayashi, J. H. SIM, and H. Sato, Conformational analyses for alanine oligomer during chain propagation by quantum chemical calculation, Polymer J., 47, 369-378 (2015). https://doi.org/10.1038/pj.2015.8
- J. Rigaudy and S. P. Klesney, Nomenclature of Organic Chemistry: Section E, 483, Oxford Pergamon Press (1979).
- M. J. Frish, G. W. Truck, H. B. Schlegel, and G. E. Scuseria, Gaussian 03 User's Reference, Manual version, Gaussian Inc., Carnegie, PA, 15106 USA, (2003).
- R. Ludwig, Water from cluster to the bulk, Angew. Chem. Int. Ed., 40, 1808-1827 (2001). https://doi.org/10.1002/1521-3773(20010518)40:10<1808::AID-ANIE1808>3.0.CO;2-1
- T. R. Dyke, K. M. Mack, and J. S. Muenter, The structure of water dimer from molecular beam electric resonance spectroscopy. J. Chem. Phys., 66, 498-510 (1977). https://doi.org/10.1063/1.433969
- J. A. Odutola and T. R. Dyke, Partially deuterated water dimers: Microwave spectra and structure, J. Chem. Phys., 72, 5062-5070 (1980). https://doi.org/10.1063/1.439795
- M. Kobayashi, J. H. Sim, and H. Sato, Conformational analyses for alanine oligomer during hydration by quantum chemical calculation (QCC), Polym. Bull., 74, 657-670 (2017). https://doi.org/10.1007/s00289-016-1736-x