DOI QR코드

DOI QR Code

Electrochemical Synthesis of 𝛽-Hydroxynitrile by addition of Acetonitrile into Benzyl Alcohol

벤질알코올과 아세토나이트릴의 반응을 통한 𝛽-hydroxynitrile의 전기화학적 합성

  • Choi, Hyebin (Department of Chemistry, Gyeongsang National University) ;
  • An, Jaun (Department of Chemistry, Gyeongsang National University) ;
  • Kwon, Ki-Young (Department of Chemistry, Gyeongsang National University)
  • 최혜빈 (경상국립대학교 화학과) ;
  • 안자운 (경상국립대학교 화학과) ;
  • 권기영 (경상국립대학교 화학과)
  • Received : 2022.06.15
  • Accepted : 2022.07.07
  • Published : 2022.08.10

Abstract

𝛽-Hydroxynitrile and 𝛽-ketonitrile were synthesized by the electrochemical oxidation of benzyl alcohol in an acetonitrile solvent. 𝛽-Hydroxynitrile was prepared by the reaction between benzaldehyde from the oxidation of benzyl alcohol and acetonitrile anion which was produced from the electrochemical reduction of acetonitrile. 𝛽-Hydroxynitrile was finally electrochemically converted into 𝛽-ketonitrile by applying 20 mA of current for 3 h. We demonstrated that 𝛽-hydroxynitrile or 𝛽-ketonitrile syntheses were prepared by electrochemical oxidation of benzyl alcohol with a commonly used Pt electrode at room temperature.

벤질알코올의 전기화학적 산화를 통해 𝛽-hydroxynitrile과 𝛽-ketonitrile을 합성하였다. 이 생성물은 용매인 아세토나이트릴이 전기화학적으로 환원되어 생성된 아세토나이트릴 음이온과 벤질알코올이 산화된 벤즈알데하이드의 첨가반응을 통해 생성되었을 것이라고 예상된다. 그리고 20 mA의 전류를 3 h 인가하였을 때, cyanomethylation를 통해 생성된 𝛽-hydroxynitrile이 전기화학적으로 산화되어 최종적으로 𝛽-ketonitrile이 합성됨을 확인하였다. 본 연구에서는 상온에서 가장 범용적으로 사용되는 백금 전극을 이용하여 벤질알코올을 전기화학적으로 𝛽-hydroxynitrile 또는 𝛽-ketonitrile로 합성하는 것이 가능한 것을 입증하였다.

Keywords

Acknowledgement

이 연구는 2020년도 경상국립대학교 연구년제 연구교수 연구지원비와 2020년도 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원을 받아 수행된 연구임(2019R1A6C1010042).

References

  1. S. A. Laufer, W. Zimmermann, and K. J. Ruff, Tetrasubstituted imidazole inhibitors of cytokine release: Probing substituents in the N-1 position, J. Med. Chem., 47, 6311-6325 (2004). https://doi.org/10.1021/jm0496584
  2. J. Hu, Y. Wei, and X. Tong, Phosphine-catalyzed [3 + 2] annulations of γ-functionalized butynoates and 1C,3O-bisnucleophiles: Highly selective reagent-controlled pathways to polysubstituted furans, Org. Lett., 13, 3068-3071 (2011). https://doi.org/10.1021/ol200940a
  3. E. Y. Ko, C. H. Lim, and K. H. Chung, Additions of acetonitrile and chloroform to aromatic aldehydes in the presence of tetrabutylammonium fluoride, Bull. Korean Chem. Soc., 27, 432-434 (2006). https://doi.org/10.5012/bkcs.2006.27.3.432
  4. J. Shen, D. Yang, Y. Liu, S. Qin, J. Zhang, J. Sun, C. Liu, C. Liu, X. Zhao, C. Chu, and R. Liu, Copper-catalyzed aerobic oxidative coupling of aromatic alcohols and acetonitrile to β-ketonitriles, Org. Lett., 16, 350-353 (2014). https://doi.org/10.1021/ol403555n
  5. S. Lee, T. Kim, B. H. Lee, S. E. Yoo, K. Lee, and K. Y. Yi, 3-Substituted-(5-arylfuran-2-ylcarbonyl)guanidines as NHE-1 inhibitors, Bioorg. Med. Chem. Lett., 17, 1291-1295 (2007). https://doi.org/10.1016/j.bmcl.2006.12.012
  6. T. A. Farghaly, N. A. Abdel Hafez, E. A. Ragab, H. M. Awad, and M. M. Abdalla, Synthesis, anti-HCV, antioxidant, and peroxynitrite inhibitory activity of fused benzosuberone derivatives, Eur. J. Med. Chem., 45, 492-500 (2010). https://doi.org/10.1016/j.ejmech.2009.10.033
  7. T. V. Hughes, S. L. Emanuel, A. K. Beck, S. K. Wetter, P. J. Connolly, P. Karnachi, M. Reuman, J. Seraj, A. R. Fuentes-Pesquera, R. H. Gruninger, S. A. Middleton, R. Lin, J. M. Davis, and D. F. C. Moffat, 4-Aryl-5-cyano-2-aminopyrimidines as VEGF-R2 inhibitors: Synthesis and biological evaluation, Bioorg. Med. Chem. Lett., 17, 3266-3270 (2007). https://doi.org/10.1016/j.bmcl.2007.04.021
  8. S. Kamila, B. Koh, and E. R. Biehl, Microwave-assisted "green" synthesis of 2-alkyl/arylbenzothiazoles in one pot: A facile approach to anti-tumor drugs, J. Heterocycl. Chem., 43, 1609-1612 (2006). https://doi.org/10.1002/jhet.5570430627
  9. S. Chakraborty, Y. J. Patel, J. A. Krause, and H. Guan, A robust nickel catalyst for cyanomethylation of aldehydes: Activation of acetonitrile under base-free conditions, Angew. Chem. Int. Ed., 52, 7523-7526 (2013). https://doi.org/10.1002/anie.201302613
  10. A. Kamal, G. B. R. Khanna, and R. Ramu, Chemoenzymatic synthesis2 of both enantiomers of fluoxetine, tomoxetine and nisoxetine: lipase-catalyzed resolution of 3-aryl-3-hydroxypropanenitriles, Tetrahedron Asymmetry, 13, 2039-2051 (2002). https://doi.org/10.1016/S0957-4166(02)00537-2
  11. Y. Fukuda and Y. Okamoto, First total synthesis of (±)-AM6898A and (±)-AM6898D, Tetrahedron, 58, 2513-2521 (2002). https://doi.org/10.1016/S0040-4020(02)00155-2
  12. H. Ankati, D. Zhu, Y. Yang, E. R. Biehl, and L. Hua, Asymmetric synthesis of both antipodes of β-hydroxy nitriles and β-hydroxy carboxylic acids via enzymatic reduction or sequential reduction/hydrolysis, J. Org. Chem., 74, 1658-1662 (2009). https://doi.org/10.1021/jo802495f
  13. S. Kamila, D. Zhu, E. R. Biehl, and L. Hua, Unexpected stereo-recognition in nitrilase-catalyzed hydrolysis of β-hydroxy nitriles, Org. Lett., 8, 4429-4431 (2006). https://doi.org/10.1021/ol061542+
  14. B. W. Yoo, S. K. Hwang, D. Y. Kim, J. W. Choi, J. J. Ko, K. I. Choi, and J. H. Kim, Indium-mediated coupling of bromoacetonitriles with aromatic acyl cyanides: Convenient synthesis of aromatic α-cyano ketones, Tetrahedron Lett., 43, 4813-4815 (2002). https://doi.org/10.1016/S0040-4039(02)00925-5
  15. Y. Suto, N. Kumagai, S. Matsunaga, M. Kanai, and M. Shibasaki, Direct catalytic aldol-type reactions using RCH2CN, Org. Lett., 5, 3147-3150 (2003). https://doi.org/10.1021/ol035206u
  16. R. Barhdadi, J. Gal, M. Heintz, M. Troupel, and J. Perichon, Aryl halides as precursors of electrogenerated bases: Utilization in coupling reactions of acetonitrile with various electrophilic compounds, Tetrahedron, 49, 5091-5098 (1993). https://doi.org/10.1016/S0040-4020(01)81874-3
  17. P. Zhu, Y. Shen, L. Dai, Q. Yu, Z.-M. Zhang, and C. An, Accelerating anode reaction with electro-oxidation of alcohols over Ru nanoparticles to reduce the potential for water splitting, ACS Appl. Mater. Interfaces, 14, 1452-1459 (2022). https://doi.org/10.1021/acsami.1c20511
  18. L. Ming, X.-Y. Wu, S.-S. Wang, W. Wu, and C.-Z. Lu, Facile growth of transition metal hydroxide nanosheets on porous nickel foam for efficient electrooxidation of benzyl alcohol, Green Chem., 23, 7825-7830 (2021). https://doi.org/10.1039/D1GC02218K
  19. M. Feroci, M. Orsini, G. Sotgiu, L. Rossi, and A. Inesi, Electrochemically promoted C-N bond formation from acetylenic amines and CO2: Synthesis of 5-methylene-1,3-oxazolidin-2-ones, J. Org. Chem., 70, 7795-7798 (2005). https://doi.org/10.1021/jo0511804
  20. I. Chiarotto, L. Mattiello, and M. Feroci, The electrogenerated cyanomethyl anion: An old base still smart, Acc. Chem. Res., 52, 3297-3308 (2019). https://doi.org/10.1021/acs.accounts.9b00465
  21. C. E. Dahm and D. G. Peters, Electrochemical reduction of tetraalkylammonium tetrafluoroborates at carbon cathodes in dimethylformamide, J. Electroanal. Chem., 402, 91-96 (1996). https://doi.org/10.1016/0022-0728(95)04209-1
  22. G. Bianchi, M. Feroci, and L. Rossi, Reaction of the electrogenerated cyanomethyl anion with carbonyl compounds: A clean and safe synthesis of β-hydroxynitriles, Eur. J. Org. Chem., 2009, 3863-3866 (2009). https://doi.org/10.1002/ejoc.200900527