Acknowledgement
이 연구는 2020년도 경상국립대학교 연구년제 연구교수 연구지원비와 2020년도 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원을 받아 수행된 연구임(2019R1A6C1010042).
References
- S. A. Laufer, W. Zimmermann, and K. J. Ruff, Tetrasubstituted imidazole inhibitors of cytokine release: Probing substituents in the N-1 position, J. Med. Chem., 47, 6311-6325 (2004). https://doi.org/10.1021/jm0496584
- J. Hu, Y. Wei, and X. Tong, Phosphine-catalyzed [3 + 2] annulations of γ-functionalized butynoates and 1C,3O-bisnucleophiles: Highly selective reagent-controlled pathways to polysubstituted furans, Org. Lett., 13, 3068-3071 (2011). https://doi.org/10.1021/ol200940a
- E. Y. Ko, C. H. Lim, and K. H. Chung, Additions of acetonitrile and chloroform to aromatic aldehydes in the presence of tetrabutylammonium fluoride, Bull. Korean Chem. Soc., 27, 432-434 (2006). https://doi.org/10.5012/bkcs.2006.27.3.432
- J. Shen, D. Yang, Y. Liu, S. Qin, J. Zhang, J. Sun, C. Liu, C. Liu, X. Zhao, C. Chu, and R. Liu, Copper-catalyzed aerobic oxidative coupling of aromatic alcohols and acetonitrile to β-ketonitriles, Org. Lett., 16, 350-353 (2014). https://doi.org/10.1021/ol403555n
- S. Lee, T. Kim, B. H. Lee, S. E. Yoo, K. Lee, and K. Y. Yi, 3-Substituted-(5-arylfuran-2-ylcarbonyl)guanidines as NHE-1 inhibitors, Bioorg. Med. Chem. Lett., 17, 1291-1295 (2007). https://doi.org/10.1016/j.bmcl.2006.12.012
- T. A. Farghaly, N. A. Abdel Hafez, E. A. Ragab, H. M. Awad, and M. M. Abdalla, Synthesis, anti-HCV, antioxidant, and peroxynitrite inhibitory activity of fused benzosuberone derivatives, Eur. J. Med. Chem., 45, 492-500 (2010). https://doi.org/10.1016/j.ejmech.2009.10.033
- T. V. Hughes, S. L. Emanuel, A. K. Beck, S. K. Wetter, P. J. Connolly, P. Karnachi, M. Reuman, J. Seraj, A. R. Fuentes-Pesquera, R. H. Gruninger, S. A. Middleton, R. Lin, J. M. Davis, and D. F. C. Moffat, 4-Aryl-5-cyano-2-aminopyrimidines as VEGF-R2 inhibitors: Synthesis and biological evaluation, Bioorg. Med. Chem. Lett., 17, 3266-3270 (2007). https://doi.org/10.1016/j.bmcl.2007.04.021
- S. Kamila, B. Koh, and E. R. Biehl, Microwave-assisted "green" synthesis of 2-alkyl/arylbenzothiazoles in one pot: A facile approach to anti-tumor drugs, J. Heterocycl. Chem., 43, 1609-1612 (2006). https://doi.org/10.1002/jhet.5570430627
- S. Chakraborty, Y. J. Patel, J. A. Krause, and H. Guan, A robust nickel catalyst for cyanomethylation of aldehydes: Activation of acetonitrile under base-free conditions, Angew. Chem. Int. Ed., 52, 7523-7526 (2013). https://doi.org/10.1002/anie.201302613
- A. Kamal, G. B. R. Khanna, and R. Ramu, Chemoenzymatic synthesis2 of both enantiomers of fluoxetine, tomoxetine and nisoxetine: lipase-catalyzed resolution of 3-aryl-3-hydroxypropanenitriles, Tetrahedron Asymmetry, 13, 2039-2051 (2002). https://doi.org/10.1016/S0957-4166(02)00537-2
- Y. Fukuda and Y. Okamoto, First total synthesis of (±)-AM6898A and (±)-AM6898D, Tetrahedron, 58, 2513-2521 (2002). https://doi.org/10.1016/S0040-4020(02)00155-2
- H. Ankati, D. Zhu, Y. Yang, E. R. Biehl, and L. Hua, Asymmetric synthesis of both antipodes of β-hydroxy nitriles and β-hydroxy carboxylic acids via enzymatic reduction or sequential reduction/hydrolysis, J. Org. Chem., 74, 1658-1662 (2009). https://doi.org/10.1021/jo802495f
- S. Kamila, D. Zhu, E. R. Biehl, and L. Hua, Unexpected stereo-recognition in nitrilase-catalyzed hydrolysis of β-hydroxy nitriles, Org. Lett., 8, 4429-4431 (2006). https://doi.org/10.1021/ol061542+
- B. W. Yoo, S. K. Hwang, D. Y. Kim, J. W. Choi, J. J. Ko, K. I. Choi, and J. H. Kim, Indium-mediated coupling of bromoacetonitriles with aromatic acyl cyanides: Convenient synthesis of aromatic α-cyano ketones, Tetrahedron Lett., 43, 4813-4815 (2002). https://doi.org/10.1016/S0040-4039(02)00925-5
- Y. Suto, N. Kumagai, S. Matsunaga, M. Kanai, and M. Shibasaki, Direct catalytic aldol-type reactions using RCH2CN, Org. Lett., 5, 3147-3150 (2003). https://doi.org/10.1021/ol035206u
- R. Barhdadi, J. Gal, M. Heintz, M. Troupel, and J. Perichon, Aryl halides as precursors of electrogenerated bases: Utilization in coupling reactions of acetonitrile with various electrophilic compounds, Tetrahedron, 49, 5091-5098 (1993). https://doi.org/10.1016/S0040-4020(01)81874-3
- P. Zhu, Y. Shen, L. Dai, Q. Yu, Z.-M. Zhang, and C. An, Accelerating anode reaction with electro-oxidation of alcohols over Ru nanoparticles to reduce the potential for water splitting, ACS Appl. Mater. Interfaces, 14, 1452-1459 (2022). https://doi.org/10.1021/acsami.1c20511
- L. Ming, X.-Y. Wu, S.-S. Wang, W. Wu, and C.-Z. Lu, Facile growth of transition metal hydroxide nanosheets on porous nickel foam for efficient electrooxidation of benzyl alcohol, Green Chem., 23, 7825-7830 (2021). https://doi.org/10.1039/D1GC02218K
- M. Feroci, M. Orsini, G. Sotgiu, L. Rossi, and A. Inesi, Electrochemically promoted C-N bond formation from acetylenic amines and CO2: Synthesis of 5-methylene-1,3-oxazolidin-2-ones, J. Org. Chem., 70, 7795-7798 (2005). https://doi.org/10.1021/jo0511804
- I. Chiarotto, L. Mattiello, and M. Feroci, The electrogenerated cyanomethyl anion: An old base still smart, Acc. Chem. Res., 52, 3297-3308 (2019). https://doi.org/10.1021/acs.accounts.9b00465
- C. E. Dahm and D. G. Peters, Electrochemical reduction of tetraalkylammonium tetrafluoroborates at carbon cathodes in dimethylformamide, J. Electroanal. Chem., 402, 91-96 (1996). https://doi.org/10.1016/0022-0728(95)04209-1
- G. Bianchi, M. Feroci, and L. Rossi, Reaction of the electrogenerated cyanomethyl anion with carbonyl compounds: A clean and safe synthesis of β-hydroxynitriles, Eur. J. Org. Chem., 2009, 3863-3866 (2009). https://doi.org/10.1002/ejoc.200900527