References
- Abolfathi, M. and Nia, A.A. (2018), "Optimization of energy absorption properties of thin-walled tubes with combined deformation of folding and circumferential expansion under axial load", Thin Wall. Struct., 130, 57-70. https://doi.org/10.1016/j.tws.2018.05.011.
- Ahmad, S., Pilakoutas, K., Rafi, M.M. and Zaman, Q.U. (2018), "Bond strength prediction of steel bars in low strength concrete by using ANN", Comput. Concrete, 22(2), 249-259. https://doi.org/ 10.12989/cac.2018.22.2.249.
- Ali, L., Wajahat, I., Golilarz, N.A., Keshtkar, F. and Bukhari, S. A.C. (2021), "LDA-GA-SVM: Improved hepatocellular carcinoma prediction through dimensionality reduction and genetically optimized support vector machine", Neur. Comput. Appl., 33(7), 2783-2792. https://doi.org/10.1007/s00521-020-05157-2
- Anjneya, K. and Roy, K. (2021), "Response surface-based structural damage identification using dynamic responses", Struct., 29, 1047-1058. https://doi.org/10.1016/j.istruc.2020.11.033.
- Applied Technology Council, and United States. Federal Emergency Management Agency (2009), Quantification of Building Seismic Performance Factors, US Department of Homeland Security, FEMA.
- ASEC/SEI 7-16 (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers.
- Asen, F. and Dehestani, M. (2021), "Influence of concrete mix proportions on lifetime flexural load-bearing capacity of RC beams under chloride corrosion of rebars", Struct., 29, 2017-2027. https://doi.org/10.1016/j.istruc.2021.01.009.
- Asteris, P.G., Armaghani, D.J., Hatzigeorgiou, G.D., Karayannis, C.G. and Pilakoutas, K. (2019), "Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks", Comput. Concrete, 24(5), 469-488. https://doi.org/10.12989/cac.2019.24.5.469.
- ATC (2007), "Recommended methodology for quantification of building system performance and response parameters", ATC-63 (90% draft).
- Banik, A., Dutta, S., Bandyopadhyay, T.K. and Biswal, S.K. (2019), "Prediction of maximum permeate flux (%) of disc membrane using response surface methodology (RSM)", Can. J. Civil Eng., 46(6), 299-307. https://doi.org/10.1139/cjce-2018-0007.
- Birzhandi, M.S. and Halabian, A.M. (2017), "Application of 2DMPA method in develpoing fragility curves of plan-asymmetric structures", Eng. Struct., 153, 540-549. https://doi.org/10.1016/j.engstruct.2017.10.038.
- Chojaczyk, A.A., Teixeira, A.P., Neves, L.C., Cardoso, J.B. and Soares, C.G. (2015), "Review and application of artificial neural networks models in reliability analysis of steel structures", Struct. Saf., 52, 78-89. https://doi.org/10.1016/j.strusafe.2014.09.002.
- Das, S. and Choudhury, S. (2019), "Influence of effective stiffness on the performance of RC frame buildings designed using displacement-based method and evaluation of column effective stiffness using ANN", Eng. Struct., 197, 109354. https://doi.org/10.1016/j.engstruct.2019.109354.
- Daouadji, T.H., Hadji, L., Meziane, M.A.A. and Bekki, H. (2016), "Elastic analysis effect of adhesive layer characteristics in steel beam strengthened with a fiber-reinforced polymer plates", Struct. Eng. Mech., 59(1), 83-100. https://doi.org/10.12989/sem.2016.59.1.083.
- De Luca, F., Vamvatsikos, D. and Iervolino, I. (2013), "Near- optimal piecewise linear fits of static pushover capacity curves for equivalent SDOF analysis", Earthq. Eng. Struct. Dyn., 42(4), 523-543. https://doi.org/10.1002/eqe.2225.
- Ghafari, E., Costa, H. and Julio, E. (2014), "RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers", Constr. Build. Mater., 66, 375-383. https://doi.org/10.1016/j.conbuildmat.2014.05.064.
- Gholamzadeh-Chitgar, A. and Berenjian, J. (2019), "Elman ANNs along with two different sets of inputs for predicting the properties of SCCs", Comput. Concrete, 24(5), 399-412. https://doi.org/10.12989/cac.2019.24.5.399.
- Hadji, L., Daouadji, T.H., Meziane, M. and Bedia, E.A. (2016), "Analyze of the interfacial stress in reinforced concrete beams strengthened with externally bonded CFRP plate", Steel Compos. Struct., 20(2), 413-429. https://doi.org/10.12989/scs.2016.20.2.413.
- Hakim, S.J.S., Razak, H.A. and Ravanfar, S.A. (2015), "Fault diagnosis on beam-like structures from modal parameters using artificial neural networks", Measure., 76, 45-61. https://doi.org/10.1016/j.measurement.2015.08.021.
- Hamidia, M. (2013) "Simplified seismic collapse capacity-based evaluation and design of frame buildings with and without supplemental damping systems", State University of New York at Buffalo.
- Hamidia, M., Filiatrault, A. and Aref, A. (2014a), "Simplified seismic sidesway collapse capacity-based evaluation and design of frame buildings with linear viscous dampers", J. Earthq. Eng., 18(4), 528-552. https://doi.org/10.1080/13632469.2013.876948.
- Hamidia, M., Filiatrault, A. and Aref, A. (2014b), "Simplified seismic sidesway collapse analysis of frame buildings", Earthq. Eng. Struct. Dyn., 43(3), 429-448. https://doi.org/10.1002/eqe.2353.
- Hammoudi, A., Moussaceb, K., Belebchouche, C. and Dahmoune, F. (2019), "Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates", Constr. Build. Mater., 209, 425-436. https://doi.org/10.1016/j.conbuildmat.2019.03.119.
- Han, S.W., Moon, K.H. and Chopra, A.K. (2010), "Application of MPA to estimate probability of collapse of structures", Earthq. Eng. Struct. Dyn., 39(11), 1259-1278. https://doi.org/10.1002/eqe.992.
- Jiang, Y., Zhao, L., Beer, M., Patelli, E., Broggi, M., Luo, J., ... & Zhang, J. (2017), "Multiple response surfaces method with advanced classification of samples for structural failure function fitting", Struct. Saf., 64, 87-97. https://doi.org/10.1016/j.strusafe.2016.10.002.
- Kotsovou, G.M., Cotsovos, D.M. and Lagaros, N.D. (2017), "Assessment of RC exterior beam-column Joints based on artificial neural networks and other methods", Eng. Struct., 144, 1-18. https://doi.org/10.1016/j.engstruct.2017.04.048.
- Manafpour, A.R. and Jalilkhani, M. (2019), "A rapid analysis procedure for estimating the seismic collapse capacity of moment resisting frames", J. Earthq. Eng., 25(8), 1513-1532. https://doi.org/10.1080/13632469.2019.1583144.
- Mashrei, M.A., Abdulrazzaq, N., Abdalla, T.Y. and Rahman, M.S. (2010), "Neural networks model and adaptive neuro-fuzzy inference system for predicting the moment capacity of ferrocement members", Eng. Struct., 32(6), 1723-1734. https://doi.org/10.1016/j.engstruct.2010.02.024.
- Njomo, W.W. and Ozay, G. (2014), "Minimization of differential column shortening and sequential analysis of RC 3D-frames using ANN", Struct. Eng. Mech., 51(6), 989-1003. https://doi.org/10.12989/sem.2014.51.6.989.
- Pathirage, C.S.N., Li, J., Li, L., Hao, H., Liu, W. and Ni, P. (2018), "Structural damage identification based on autoencoder neural networks and deep learning", Eng. Struct., 172, 13-28. https://doi.org/10.1016/j.engstruct.2018.05.109.
- Perus, I., Klinc, R., Dolenc, M. and Dolsek, M. (2013), "A web- based methodology for the prediction of approximate IDA curves", Eng. Struct., 42(1), 43-60. https://doi.org/10.1002/eqe.2192.
- Sadeghpour, A. and Ozay, G. (2020), "Evaluation of reinforced concrete frames designed based on previous Iranian seismic codes", Arab. J. Sci. Eng., 45, 8069-8085. https://doi.org/10.1007/s13369-020-04548-w.
- Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength", Steel Compos. Struct, 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679.
- Sedghi, Y., Zandi, Y., Shariati, M., Ahmadi, E., Azar, V.M., Toghroli, A., ... & Wakil, K. (2018), "Application of ANFIS technique on performance of C and L shaped angle shear connectors", Smart Struct. Syst., 22(3), 335-340. https://doi.org/10.12989/sss.2018.22.3.335.
- Shafei, B., Zareian, F. and Lignos, D.G. (2011), "A simplified method for collapse capacity assessment of moment-resisting frame and shear wall structural systems", Eng. Struct., 33(4), 1107-1116. https://doi.org/10.1016/j.engstruct.2010.12.028.
- Shakeel, S., Landolfo, R. and Fiorino, L. (2019), "Behaviour factor evaluation of CFS shear walls with gypsum board sheathing according to FEMA P695 for Eurocodes", Thin Wall. Struct., 141, 194-207. https://doi.org/10.1016/j.tws.2019.04.017.
- Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020), "Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)", Steel Compos. Struct., 34(1), 155-170. https://doi.org/10.12989/scs.2020.34.1.155.
- Shin, J., Scott, D.W., Stewart, L.K. and Jeon, J.S. (2020), "Multi-hazard assessment and mitigation for seismically-deficient RC building frames using artificial neural network models", Eng. Struct., 207, 110204. https://doi.org/10.1016/j.engstruct.2020.110204.
- Su, G., Jiang, J., Yu, B. and Xiao, Y. (2015), "A Gaussian process-based response surface method for structural reliability analysis", Struct. Eng. Mech., 56(4), 549-567. https://doi.org/10.12989/sem.2015.56.4.549.
- Tesfamariam, S., Skandalos, K., Goda, K., Bezabeh, M.A., Bitsuamlak, G. and Popovski, M. (2021), "Quantifying the ductility-related force modification factor for 10-Story Timber-RC hybrid building using FEMA P695 procedure and considering the 2015 NBC seismic hazard", J. Struct. Eng., 147(5), 04021052. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003007.
- Vahidi, E.K., Malekabadi, M.M., Rezaei, A., Roshani, M.M. and Roshani, G.H. (2017), "Modelling of mechanical properties of roller compacted concrete containing RHA using ANFIS", Comput. Concrete, 19(4), 435-442. https://doi.org/10.12989/cac.2017.19.4.435.
- Vamvatsikos, D. and Allin Cornell, C. (2006), "Direct estimation of the seismic demand and capacity of oscillators with multi-linear static pushovers through IDA", Earthq. Eng. Struct. Dyn., 35(9), 1097-1117. https://doi.org/10.1002/eqe.573.
- Wang, B., Man, T. and Jin, H. (2015), "Prediction of expansion behavior of self-stressing concrete by artificial neural networks and fuzzy inference systems", Constr. Build. Mater., 84, 184-191. https://doi.org/10.1016/j.conbuildmat.2015.03.059.
- Zarringol, M., Thai, H.T., Thai, S. and Patel, V. (2020), "Application of ANN to the design of CFST columns", Struct., 28, 2203-2220. https://doi.org/10.1016/j.istruc.2020.10.048.
- Zhang, X., Shahnewaz, M. and Tannert, T. (2018), "Seismic reliability analysis of a timber steel hybrid system", Eng. Struct., 167, 629-638. https://doi.org/10.1016/j.engstruct.2018.04.051.
- Zhou, Q., Wang, F. and Zhu, F. (2016), "Estimation of compressive strength of hollow concrete masonry prisms using artificial neural networks and adaptive neuro-fuzzy inference systems", Constr. Build. Mater., 125, 417-426. https://doi.org/10.1016/j.conbuildmat.2016.08.064.
- Zhou, Q., Zhu, F., Yang, X., Wang, F., Chi, B. and Zhang, Z. (2017), "Shear capacity estimation of fully grouted reinforced concrete masonry walls using neural network and adaptive neuro-fuzzy inference system models", Constr. Build. Mater., 153, 937-947. https://doi.org/10.1016/j.conbuildmat.2017.07.171.