DOI QR코드

DOI QR Code

An efficient adaptive finite element method based on EBE-PCG iterative solver for LEFM analysis

  • Hearunyakij, Manat (Department of Mechanical Engineering Technology, College of Industrial Technology, King Mongkut's University of Technology North Bangkok) ;
  • Phongthanapanich, Sutthisak (Department of Mechanical Engineering Technology, College of Industrial Technology, King Mongkut's University of Technology North Bangkok)
  • Received : 2020.03.28
  • Accepted : 2022.05.15
  • Published : 2022.08.10

Abstract

Linear Elastic Fracture Mechanics (LEFM) has been developed by applying stress analysis to determine the stress intensity factor (SIF, K). The finite element method (FEM) is widely used as a standard tool for evaluating the SIF for various crack configurations. The prediction accuracy can be achieved by applying an adaptive Delaunay triangulation combined with a FEM. The solution can be solved using either direct or iterative solvers. This work adopts the element-by-element preconditioned conjugate gradient (EBE-PCG) iterative solver into an adaptive FEM to solve the solution to heal problem size constraints that exist when direct solution techniques are applied. It can avoid the formation of a global stiffness matrix of a finite element model. Several numerical experiments reveal that the present method is simple, fast, and efficient compared to conventional sparse direct solvers. The optimum convergence criterion for two-dimensional LEFM analysis is studied. In this paper, four sample problems of a two-edge cracked plate, a center cracked plate, a single-edge cracked plate, and a compact tension specimen is used to evaluate the accuracy of the prediction of the SIF values. Finally, the efficiency of the present iterative solver is summarized by comparing the computational time for all cases.

Keywords

Acknowledgement

The second author is pleased to acknowledge the College of Industrial Technology, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand, for funding this research work (Grant No. Res-CIT0286/2022).

References

  1. Anderson, T.L. (2005), Fracture Mechanics: Fundamentals and Applications, 7th Edition, CRC Press, Boca Raton, FL, USA.
  2. ASTM E647-00 (2000), Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International, West Conshohocken, PA, USA.
  3. Augarde, C.E., Ramage, A. and Staudacher, J. (2006), "An element-based displacement preconditioner for linear elasticity problems", Comput. Struct., 84(31-32), 2306-2315. https://doi.org/10.1016/j.compstruc.2006.08.057.
  4. Barsoum, R.S. (1977), "Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements", Int. J. Numer. Meth. Eng., 11(1), 85-98. https://doi.org/10.1002/nme.1620110109.
  5. Cecka, C., Lew, A.J. and Darve, E. (2011), "Assembly of finite element methods on graphics processors", Int. J. Numer. Meth. Eng., 85(5), 640-669. https://doi.org/10.1002/nme.2989.
  6. Dechaumphai, P. and Phongthanapanich, S. (2004), "Adaptive Delaunay triangulation with object-oriented programming for crack propagation analysis", Finite Elem. Anal. Des., 40(13-14), 1753-1771. https://doi.org/10.1016/j.finel.2004.01.002.
  7. Dechaumphai, P., Phongthanapanich, S. and Bhandhubanyong, P. (2003a), "Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks", Struct. Eng. Mech., 15(5), 563-578. https://doi.org/10.12989/sem.2003.15.5.563.
  8. Dechaumphai, P., Phongthanapanich, S. and Srichareonchai, T. (2003b), "Combined Delaunay triangulation and adaptive finite element method for crack growth analysis", Acta Mechanica Sinica, 19, 161-171. https://doi.org/10.1007/BF02487678.
  9. Goddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Wobker, H., Becker, C. and Turek, S. (2008), "Using GPUs to improve multigrid solver performance on a cluster", Int. J. Comput. Eng. Sci., 4(1), 36-55. https://doi.org/10.1504/IJCSE.2008.021111.
  10. Guinea, G.V., Planas, J. and Elices, M. (2000), "KI evaluation by the displacement extrapolation technique", Eng. Fract. Mech., 66(3), 243-255. https://doi.org/10.1016/S0013-7944(00)00016-3.
  11. Hales, J.D., Novascone, S.R., Williamson, R.L., Gaston, D.R. and Tonks, M.R. (2012), "Solving nonlinear solid mechanics problems with the Jacobian-free Newton Krylov method", CMES-Comput. Model Eng., 84(2), 123-152. https://doi:10.3970/cmes.2012.084.123.
  12. Hughes, T.J.R., Levit, I. and Winget, J. (1983), "An element-by-element solution algorithm for problems of structural and solid mechanics", Comput. Meth. Appl. Mech. Eng., 36(2), 241-254. https://doi.org/10.1016/0045-7825(83)90115-9.
  13. Koric, S. and Gupta, A. (2016), "Sparse matrix factorization in the implicit finite element method on petascale architecture", Comput. Meth. Appl. Mech. Eng., 302, 281-292. https://doi.org/10.1016/j.cma.2016.01.011.
  14. Koric, S., Lu, Q. and Guleryuz, E. (2014), "Evaluation of massively parallel linear sparse solvers on unstructured finite element meshes", Comput. Struct., 141, 19-25. https://doi.org/10.1016/j.compstruc.2014.05.009.
  15. Martinez-Frutos, M. and Herrero-Perez, D.H. (2015), "Efficient matrix-free GPU implementation of fixed grid finite element analysis", Finite Elem. Anal. Des., 104(13-14), 61-71. https://doi.org/10.1016/j.finel.2015.06.005.
  16. Martinez-Frutos, J., Martinez-Castejon, P.J. and Herrero-Perez, D. (2015), "Fine-grained GPU implementation of assembly-free iterative solver for finite element problems", Comput. Struct., 15, 9-18. https://doi.org/10.1016/j.compstruc.2015.05.010.
  17. Murakami, Y. (1987), Stress Intensity Factors Handbook, Pergamon Press, Oxford, NY, USA.
  18. Nakajima, K. and Okuda, H. (2004), "Parallel iterative solvers with selective blocking preconditioning for simulations of fault-zone contact", Numer. Linear. Algebr., 11(8-9), 831-852. https://doi.org/10.1002/nla.349.
  19. Phongthanapanich, S. and Dechaumphai, P. (2006), "Easy FEM-An object-oriented graphics interface finite element/finite volume software", Adv. Eng. Softw., 37(2), 797-804. https://doi.org/10.1016/j.advengsoft.2006.05.006.
  20. Phongthanapanich, S. and Dechaumphai, P. (2009), "Combined finite volume element method for singularly perturbed reaction-diffusion problems", Appl. Math. Comput., 209(2), 177-185. https://doi.org/10.1016/j.amc.2008.10.047.
  21. Ruppert, J. (1995), "A Delaunay refinement algorithm for quality 2-dimensional mesh generation", J. Algorithm, 18(3), 548-585. https://doi.org/10.1006/jagm.1995.1021.
  22. Shewchuck, J.R. (1994), "An introduction to the conjugate gradient method without the agonizing pain", Carnegie Mellon University, Pittsburgh, PA.
  23. Smith, I.M., Griffiths, D.V. and Margetts, L. (2014), Programming the Finite Element Method, 5th Edition, Wiley, Chennai, India.