Acknowledgement
The second author is pleased to acknowledge the College of Industrial Technology, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand, for funding this research work (Grant No. Res-CIT0286/2022).
References
- Anderson, T.L. (2005), Fracture Mechanics: Fundamentals and Applications, 7th Edition, CRC Press, Boca Raton, FL, USA.
- ASTM E647-00 (2000), Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International, West Conshohocken, PA, USA.
- Augarde, C.E., Ramage, A. and Staudacher, J. (2006), "An element-based displacement preconditioner for linear elasticity problems", Comput. Struct., 84(31-32), 2306-2315. https://doi.org/10.1016/j.compstruc.2006.08.057.
- Barsoum, R.S. (1977), "Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements", Int. J. Numer. Meth. Eng., 11(1), 85-98. https://doi.org/10.1002/nme.1620110109.
- Cecka, C., Lew, A.J. and Darve, E. (2011), "Assembly of finite element methods on graphics processors", Int. J. Numer. Meth. Eng., 85(5), 640-669. https://doi.org/10.1002/nme.2989.
- Dechaumphai, P. and Phongthanapanich, S. (2004), "Adaptive Delaunay triangulation with object-oriented programming for crack propagation analysis", Finite Elem. Anal. Des., 40(13-14), 1753-1771. https://doi.org/10.1016/j.finel.2004.01.002.
- Dechaumphai, P., Phongthanapanich, S. and Bhandhubanyong, P. (2003a), "Adaptive finite elements by Delaunay triangulation for fracture analysis of cracks", Struct. Eng. Mech., 15(5), 563-578. https://doi.org/10.12989/sem.2003.15.5.563.
- Dechaumphai, P., Phongthanapanich, S. and Srichareonchai, T. (2003b), "Combined Delaunay triangulation and adaptive finite element method for crack growth analysis", Acta Mechanica Sinica, 19, 161-171. https://doi.org/10.1007/BF02487678.
- Goddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Wobker, H., Becker, C. and Turek, S. (2008), "Using GPUs to improve multigrid solver performance on a cluster", Int. J. Comput. Eng. Sci., 4(1), 36-55. https://doi.org/10.1504/IJCSE.2008.021111.
- Guinea, G.V., Planas, J. and Elices, M. (2000), "KI evaluation by the displacement extrapolation technique", Eng. Fract. Mech., 66(3), 243-255. https://doi.org/10.1016/S0013-7944(00)00016-3.
- Hales, J.D., Novascone, S.R., Williamson, R.L., Gaston, D.R. and Tonks, M.R. (2012), "Solving nonlinear solid mechanics problems with the Jacobian-free Newton Krylov method", CMES-Comput. Model Eng., 84(2), 123-152. https://doi:10.3970/cmes.2012.084.123.
- Hughes, T.J.R., Levit, I. and Winget, J. (1983), "An element-by-element solution algorithm for problems of structural and solid mechanics", Comput. Meth. Appl. Mech. Eng., 36(2), 241-254. https://doi.org/10.1016/0045-7825(83)90115-9.
- Koric, S. and Gupta, A. (2016), "Sparse matrix factorization in the implicit finite element method on petascale architecture", Comput. Meth. Appl. Mech. Eng., 302, 281-292. https://doi.org/10.1016/j.cma.2016.01.011.
- Koric, S., Lu, Q. and Guleryuz, E. (2014), "Evaluation of massively parallel linear sparse solvers on unstructured finite element meshes", Comput. Struct., 141, 19-25. https://doi.org/10.1016/j.compstruc.2014.05.009.
- Martinez-Frutos, M. and Herrero-Perez, D.H. (2015), "Efficient matrix-free GPU implementation of fixed grid finite element analysis", Finite Elem. Anal. Des., 104(13-14), 61-71. https://doi.org/10.1016/j.finel.2015.06.005.
- Martinez-Frutos, J., Martinez-Castejon, P.J. and Herrero-Perez, D. (2015), "Fine-grained GPU implementation of assembly-free iterative solver for finite element problems", Comput. Struct., 15, 9-18. https://doi.org/10.1016/j.compstruc.2015.05.010.
- Murakami, Y. (1987), Stress Intensity Factors Handbook, Pergamon Press, Oxford, NY, USA.
- Nakajima, K. and Okuda, H. (2004), "Parallel iterative solvers with selective blocking preconditioning for simulations of fault-zone contact", Numer. Linear. Algebr., 11(8-9), 831-852. https://doi.org/10.1002/nla.349.
- Phongthanapanich, S. and Dechaumphai, P. (2006), "Easy FEM-An object-oriented graphics interface finite element/finite volume software", Adv. Eng. Softw., 37(2), 797-804. https://doi.org/10.1016/j.advengsoft.2006.05.006.
- Phongthanapanich, S. and Dechaumphai, P. (2009), "Combined finite volume element method for singularly perturbed reaction-diffusion problems", Appl. Math. Comput., 209(2), 177-185. https://doi.org/10.1016/j.amc.2008.10.047.
- Ruppert, J. (1995), "A Delaunay refinement algorithm for quality 2-dimensional mesh generation", J. Algorithm, 18(3), 548-585. https://doi.org/10.1006/jagm.1995.1021.
- Shewchuck, J.R. (1994), "An introduction to the conjugate gradient method without the agonizing pain", Carnegie Mellon University, Pittsburgh, PA.
- Smith, I.M., Griffiths, D.V. and Margetts, L. (2014), Programming the Finite Element Method, 5th Edition, Wiley, Chennai, India.