DOI QR코드

DOI QR Code

Investigating nonlinear vibration behavior of sandwich panels with multi-scale skins based on a numerical method

  • Cui, Zhenming (College of Water Conservancy and Hydropower Engineering, Hohai University) ;
  • Cai, Xin (College of Water Conservancy and Hydropower Engineering, Hohai University) ;
  • Ali, H. Elhosiny (Department of Physics, Faculty of Science, King Khalid University) ;
  • Muhsen, Sami (Air Conditioning and Refrigeration Techniques Engineering Department, Al-Mustaqbal University College)
  • Received : 2021.09.14
  • Accepted : 2022.01.25
  • Published : 2022.08.10

Abstract

A nonlinear vibrational analysis of sandwich curved panels having multi-scale face sheets has been performed in this article based on differential quadrature method (DQM). All mechanical properties of multi-scale skins have been established in the context of three-dimensional Mori-Tanaka scheme for which the influences of glass fibers and random carbon nanotubes (CNTs) have been taken into account. The governing equations for sandwich the panel have been developed based upon thin shell formulation in which geometry nonlinearities have been taken into account. Next, DQ approach has been applied to solve the governing equations for determining the relationships of frequencies with deflections for curved panels. It will be demonstrated that the relationships of frequencies with deflections are dependent on the changing of CNT weight fractions, fibers alignment, fibers volume, panel radius and skin thickness.

Keywords

References

  1. Abdulrazzaq, M.A., Muhammad, A.K., Kadhim, Z.D. and Faleh, N.M. (2020), "Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM", Couple. Syst. Mech., 9(3), 201-217. https://doi.org/10.12989/csm.2020.9.3.201.
  2. Afshari, B.M., Mirjavadi, S.S. and Barati, M.R. (2022), "Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model", Adv. Concrete Constr., 13(5), 377-384. https://doi.org/10.12989/acc.2022.13.5.377.
  3. Ahankari, S.S and Kar, K.K. (2010), "Hysteresis measurements and dynamic mechanical characterization of functionally graded natural rubber-carbon black composites", Polym. Eng. Sci., 50(5), 871-877. https://doi.org/10.1002/pen.21601.
  4. Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020a), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Mater. Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033.
  5. Ahmed, R.A., Al-Maliki, A.F. and Faleh, N.M. (2020b), "Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity", Adv. Nano Res., 8(2), 157. https://doi.org/10.12989/anr.2020.8.2.157.
  6. Alam, Z., Sun, L., Zhang, C. and Samali, B. (2022), "Influence of seismic orientation on the statistical distribution of nonlinear seismic response of the stiffness-eccentric structure", Struct., 39, 387-404. https://doi.org/10.1016/j.istruc.2022.03.042.
  7. Ali, H.A., Al-Toki, M.H., Fenjan, R.M. and Faleh, N.M. (2022), "Nonlinear static analysis of smart beams under transverse loads and thermal-electrical environments", Adv. Comput. Des., 7(2), 99-112. https://doi.org/10.12989/acd.2022.7.2.099.
  8. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Mainten., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  9. Barati, M.R. (2017a), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermomechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64(6), 683-693. https://doi.org/10.12989/sem.2017.64.6.683.
  10. Barati, M.R. (2017b), "Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates", Smart Struct. Syst., 20(5), 573-581. https://doi.org/10.12989/sss.2017.20.5.573.
  11. Barati, M.R. (2018a), "Porosity-dependent vibration and dynamic stability of compositionally gradient nanofilms using nonlocal strain gradient theory", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(17), 3144-3155. https://doi.org/10.1177%2F0954406217729421. https://doi.org/10.1177%2F0954406217729421
  12. Barati, M.R. (2018b), "Investigating nonlinear vibration of closed circuit flexoelectric nanobeams with surface effects via Hamiltonian method", Microsyst. Technol., 24(4), 1841-1851. https://doi.org/10.1007/s00542-017-3549-8.
  13. Barati, M.R. and Zenkour, A. (2018), "Forced vibration of sinusoidal FG nanobeams resting on hybrid Kerr foundation in hygro-thermal environments", Mech. Adv. Mater. Struct, 25(8), 669-680. https://doi.org/10.1080/15376494.2017.1308603.
  14. Barati, M.R. and Shahverdi, H. (2018a), "Nonlinear vibration of nonlocal four-variable graded plates with porosities implementing homotopy perturbation and Hamiltonian methods", Acta Mechanica, 229(1), 343-362. https://doi.org/10.1007/s00707-017-1952-y.
  15. Barati, M.R. and Shahverdi, H. (2018b), "Frequency analysis of nanoporous mass sensors based on a vibrating heterogeneous nanoplate and nonlocal strain gradient theory", Microsyst. Technol., 24(3), 1479-1494. https://doi.org/10.1007/s00542-017-3531-5.
  16. Ebrahimi, F. and Barati, M.R. (2017a), "Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory", Compos. Struct., 166, 256-267. https://doi.org/10.1016/j.compstruct.2017.01.036.
  17. Ebrahimi, F. and Barati, M.R. (2017b), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Therm. Stress., 40(5), 548-563. https://doi.org/10.1080/01495739.2016.1254076.
  18. Ebrahimi, F. and Barati, M.R. (2017c), "Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory", Struct. Eng. Mech., 61(6), 721-736. https://doi.org/10.12989/sem.2017.61.6.721.
  19. Ebrahimi, F. and Barati, M.R. (2017d), "Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects", Appl. Phys. A, 123(1), 1-10. https://doi.org/10.1007/s00339-016-0511-z.
  20. Ebrahimi, F., Mahmoodi, F. and Barati, M.R. (2017), "Thermomechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory", Adv. Mater. Res., 6(3), 279. https://doi.org/10.12989/amr.2017.6.3.279.
  21. Ebrahimi, F. and Barati, M.R. (2018a), "A modified nonlocal couple stress-based beam model for vibration analysis of higher-order FG nanobeams", Mech. Adv. Mater. Struct, 25(13), 1121-1132. https://doi.org/10.1080/15376494.2017.1365979.
  22. Ebrahimi, F. and Barati, M.R. (2018b), "Longitudinal varying elastic foundation effects on vibration behavior of axially graded nanobeams via nonlocal strain gradient elasticity theory", Mech. Adv. Mater. Struct, 25(11), 953-963. https://doi.org/10.1080/15376494.2017.1329467.
  23. Ebrahimi, F. and Barati, M.R. (2018c), "Hygro-thermal vibration analysis of bilayer graphene sheet system via nonlocal strain gradient plate theory", J. Brazil. Soc. Mech. Sci. Eng., 40(9), 1-15. https://doi.org/10.1007/s40430-018-1350-y.
  24. Ebrahimi, F. and Barati, M.R. (2018d), "Vibration analysis of nonlocal strain gradient embedded single-layer graphene sheets under nonuniform in-plane loads", J. Vib. Control, 24(20), 4751-4763. https://doi.org/10.1177%2F1077546317734083. https://doi.org/10.1177%2F1077546317734083
  25. Ebrahimi, F. and Barati, M.R. (2018e), "Effect of three-parameter viscoelastic medium on vibration behavior of temperature-dependent non-homogeneous viscoelastic nanobeams in a hygro-thermal environment", Mech. Adv. Mater. Struct, 25(5), 361-374. https://doi.org/10.1080/15376494.2016.1255831.
  26. Ebrahimi, F. and Barati, M.R. (2018f), "Nonlocal strain gradient theory for damping vibration analysis of viscoelastic inhomogeneous nano-scale beams embedded in visco-Pasternak foundation", J. Vib. Control, 24(10), 2080-2095. https://doi.org/10.1177%2F1077546316678511. https://doi.org/10.1177%2F1077546316678511
  27. Ebrahimi, F. and Barati, M.R. (2018g), "Free vibration analysis of couple stress rotating nanobeams with surface effect under inplane axial magnetic field. J. Vib. Control, 24(21), 5097-5107. https://doi.org/10.1177%2F1077546317744719. https://doi.org/10.1177%2F1077546317744719
  28. Ebrahimi, F. and Barati, M.R. (2018h), "Nonlocal and surface effects on vibration behavior of axially loaded flexoelectric nanobeams subjected to in-plane magnetic field", Arab J. Sci. Eng., 43(3), 1423-1433. https://doi.org/10.1007/s13369-017-2943-y.
  29. Ebrahimi, F. and Barati, M.R. (2018i), "Vibration analysis of graphene sheets resting on the orthotropic elastic medium subjected to hygro-thermal and in-plane magnetic fields based on the nonlocal strain gradient theory", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(13), 2469-2481. https://doi.org/10.1177%2F0954406217720232. https://doi.org/10.1177%2F0954406217720232
  30. Ebrahimi, F. and Barati, M. . (2018j), "Vibration analysis of parabolic shear-deformable piezoelectrically actuated nanoscale beams incorporating thermal effects", Mech. Adv. Mater. Struct, 25(11), 917-929. https://doi.org/10.1080/15376494.2017.1323141.
  31. Ebrahimi, F. and Barati, M.R. (2019a), "Vibration analysis of biaxially compressed double-layered graphene sheets based on nonlocal strain gradient theory", Mech. Adv. Mater. Struct, 26(10), 854-865. https://doi.org/10.1080/15376494.2018.1430267.
  32. Ebrahimi, F. and Barati, M.R. (2019b), "Damping vibration behavior of viscoelastic porous nanocrystalline nanobeams incorporating nonlocal-couple stress and surface energy effects", Iran. J. Sci. Technol., Trans. Mech. Eng., 43(2), 187-203. https://doi.org/10.1007/s40997-017-0127-8.
  33. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M and Lanka, S. (2011), "The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites", Compos. Part A: Appl. Sci. Manuf., 42(3), 234-243. https://doi.org/10.1016/j.compositesa.2010.11.008
  34. Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009), "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites", J. Mater. Chem., 19(38), 7098-7105. https://doi.org/10.1039/B908220D.
  35. Fenjan, R.M., Ahmed, R.A., Hamad, L.B. and Faleh, N.M. (2020a), "A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads", Adv. Comput. Des., 5(4), 349-362. https://doi.org/10.12989/acd.2020.5.4.349.
  36. Fenjan, R.M., Faleh, N.M. and Ridha, A.A. (2020b), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel Compos. Struct., 36(6), 631-642. https://doi.org/10.12989/scs.2020.36.6.631.
  37. Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struct., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052.
  38. Forsat, M., Badnava, S., Mirjavadi, S.S., Barati, M.R. and Hamouda, A.M.S. (2020), "Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory", Eur. Phys. J. Plus, 135(1), 1-19. https://doi.org/10.1140/epjp/s13360-019-00042-x.
  39. Fu, Y., Chen, H., Guo, R., Huang, Y. and Toroghinejad, M.R. (2021), "Extraordinary strength-ductility in gradient amorphous structured Zr-based alloy", J. Alloy. Compound., 888, 161507. https://doi.org/10.1016/j.jallcom.2021.161507.
  40. Gao, N., Zhang, Z., Deng, J., Guo, X., Cheng, B. and Hou, H. (2022), "Acoustic metamaterials for noise reduction: A review", Adv. Mater. Technol., 2100698. https://doi.org/10.1002/admt.202100698.
  41. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B and Schulte, K. (2004), "Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002.
  42. Hao, R.B., Lu, Z.Q., Ding, H. and Chen, L.Q. (2022), "A nonlinear vibration isolator supported on a flexible plate: analysis and experiment", Nonlin. Dyn., 108(2), 941-958. https://doi.org/10.1007/s11071-022-07243-7.
  43. Hu, M., Wang, Y., Yan, Z., Zhao, G., Zhao, Y., Xia, L. and Zhuang, X. (2021), "Hierarchical dual-nanonet of polymer nanofibers and supramolecular nanofibrils for air filtration with a high filtration efficiency, low air resistance and high moisture permeation", J. Mater. Chem. A, 9(24), 14093-14100. https://doi.org/10.1039/D1TA01505B.
  44. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastr. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
  45. Huang, H., Guo, M., Zhang, W. and Huang, M. (2022), "Seismic behavior of strengthened RC columns under combined loadings", J. Bridge Eng., 27(6), 05022005. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001871.
  46. King, J.A., Klimek, D.R., Miskioglu, I. and Odegard, G.M. (2013), "Mechanical properties of graphene nanoplatelet/epoxy composites", J. Appl. Polym. Sci., 128(6), 4217-4223. https://doi.org/10.1002/app.38645.
  47. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  48. Kunbar, L.A.H., Hamad, L.B., Ahmed, R.A. and Faleh, N.M. (2020), "Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects", Smart Struct. Syst., 25(5), 619-630. https://doi.org/10.12989/sss.2020.25.5.619.
  49. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  50. Mirjavadi, S.S., Khan, I., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020a), "Analyzing nonlinear vibration of metal foam stiffened toroidal convex/concave shell segments considering porosity distribution", Mech. Bas. Des. Struct. Mach., 1-17. https://doi.org/10.1080/15397734.2020.1841654.
  51. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.S. (2020b), "Nonlinear vibrations of variable thickness curved panels made of multi-scale epoxy/fiberglass/CNT material using Jacobi elliptic functions", Mech. Bas. Des. Struct. Mach., 1-17. https://doi.org/10.1080/15397734.2020.1777156.
  52. Mirjavadi, S.S., Yahya, Y.Z., Forsat, M., Khan, I., Hamouda, A. M.S. and Barati, M.R. (2020c), "Magneto-electric effects on nonlocal nonlinear dynamic characteristics of imperfect multiphase magneto-electro-elastic beams", J. Magnet. Magnet. Mater., 503, 166649. https://doi.org/10.1016/j.jmmm.2020.166649.
  53. Mirjavadi, S.S., Bayani, H., Khoshtinat, N., Forsat, M., Barati, M. R. and Hamouda, A.M.S. (2020d), "On nonlinear vibration behavior of piezo-magnetic doubly-curved nanoshells", Smart Struct. Syst., 26(5), 631-640. https://doi.org/10.12989/sss.2020.26.5.631.
  54. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020e), "Nonlinear forced vibrations of multi-scale epoxy/CNT/fiberglass truncated conical shells and annular plates via 3D Mori-Tanaka scheme", Steel Compos. Struct., 35(6), 765-777. https://doi.org/10.12989/scs.2020.35.6.765.
  55. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2021), "Investigating nonlinear vibrations of multi-scale truncated conical shell segments with carbon nanotube/fiberglass reinforcement using a higher order conical shell theory", J. Strain Anal. Eng. Des., 56(3), 181-192. https://doi.org/10.1177%2F0309324720939811. https://doi.org/10.1177%2F0309324720939811
  56. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.S. (2022), "Analysis of nonlinear vibrations of CNT-/fiberglass-reinforced multi-scale truncated conical shell segments", Mech. Bas. Des. Struct. Mach., 50(6), 2067-2083. https://doi.org/10.1080/15397734.2020.1768866.
  57. Muhammad, A.K., Hamad, L.B., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment", Adv. Mater. Res., 8(3), 237-257. https://doi.org/10.12989/amr.2019.8.3.237.
  58. Nieto, A., Bisht, A., Lahiri, D., Zhang, C and Agarwal, A. (2017), "Graphene reinforced metal and ceramic matrix composites: a review", Int. Mater. Rev., 62(5), 241-302. https://doi.org/10.1080/09506608.2016.1219481.
  59. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
  60. Shen, H.S., Xiang, Y., Lin, F. and Hui, D. (2017), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B: Eng., 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020.
  61. Shi, D., Chen, Y., Li, Z., Dong, S., Li, L., Hou, M. and Zhao, N. (2022), "Anisotropic charge transport enabling high-throughput and high-aspect-ratio wet etching of silicon carbide", Small Meth., 2200329. https://doi.org/10.1002/smtd.202200329.
  62. Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.
  63. Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation", Appl. Math. Model., 39(18), 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058.
  64. Xin, C., Li, Z., Zhang, Q., Peng, Y., Guo, H. and Xie, S. (2022), "Investigating the output performance of Triboelectric Nanogenerators with Single/Double-sided interlayer", Nano Energy, 107448. https://doi.org/10.1016/j.nanoen.2022.107448.
  65. Xu, Y.H., Zhang, H.G., Yang, F.B., Tong, L., Yan, D., Yang, Y.F., Ren, J., Ma, L.L. and Wang, Y. (2022), "State of charge estimation of supercapacitors based on multi-innovation unscented Kalman filter under a wide temperature range", Int. J. Energy Res., https://doi.org/10.1002/er.8334.
  66. Yang, B., Yang, J. and Kitipornchai, S. (2017), "Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity", Meccanica, 52(10), 2275-2292. https://doi.org/10.1007/s11012-016-0579-8.
  67. Zhang, X., Sun, X., Lv, T., Weng, L., Chi, M., Shi, J. and Zhang, S. (2020), "Preparation of PI porous fiber membrane for recovering oil-paper insulation structure", J. Mater. Sci.: Mater. Electron., 31(16), 13344-13351. https://doi.org/10.1007/s10854-020-03888-5.
  68. Zhang, C., Jin, Q., Song, Y., Wang, J., Sun, L., Liu, H. and Guo, S. (2021), "Vibration analysis of a sandwich cylindrical shell in hygrothermal environment", Nanotech. Rev., 10(1), 414-430. https://doi.org/10.1515/ntrev-2021-0026.
  69. Zhang, H., Liu, Y. and Deng, Y. (2021), "Temperature gradient modeling of a steel box-girder suspension bridge using Copulas probabilistic method and field monitoring", Adv. Struct. Eng., 24(5), 947-961. https://doi.org/10.1177%2F1369433220971779. https://doi.org/10.1177%2F1369433220971779