DOI QR코드

DOI QR Code

Dynamic impedance of a 3×3 pile-group system: Soil plasticity effects

  • 투고 : 2021.07.30
  • 심사 : 2022.05.24
  • 발행 : 2022.08.10

초록

This paper considers dynamic impedance functions and presents a detailed analysis of the soil plasticity influence on the pile-group foundation dynamic response. A three-dimensional finite element model is proposed, and a calculation method considering the time domain is detailed for the nonlinear dynamic impedance functions. The soil mass is modeled as continuum elastoplastic solid using the Mohr-Coulomb shear failure criterion. The piles are modeled as continuum solids and the slab as a structural plate-type element. Quiet boundaries are implemented to avoid wave reflection on the boundaries. The model and method of analysis are validated by comparison with those published on literature. Numerical results are presented in terms of horizontal and vertical nonlinear dynamic impedances as a function of the shear soil parameters (cohesion and internal friction angle), pile spacing ratio and frequencies of the dynamic signal.

키워드

참고문헌

  1. Aubry, D. and Clouteau, D. (1992), "A subdomain approach to dynamic soil-structure interaction", Recent Advances in Earthquake Engineering and Structural Dynamics, 251-272.
  2. Bentley, K.J. and El-Naggar, M.H. (2000), "Numerical analysis of the kinematic response of single piles", Can. Geotech. J., 37, 1368-1382. https://doi.org/10.1139/t00-066.
  3. Beskos, D.E. (1997), "Boundary element methods in a dynamic analysis: Part II", Appl. Mech. Rev., 50, 149-197. https://doi.org/10.1115/1.3149529.
  4. Code_Aster (2015), www.code-aster.org, Version 12.5.0 (12/12/2015) EDF, General Public License.
  5. Dias, D. and Grippon, J. (2017), "Numerical modelling of a pilesupported embankment using variable inertia piles", Struct. Eng. Mech., 61(2), 245-253. https://doi.org/10.12989/sem.2017.61.2.245.
  6. Dobry, R. and Gazetas, G. (1988), "Simple method for dynamic stiffness and damping of floating pile groups", Geotechnique, 38, 557-574. https://doi.org/10.1680/geot.1988.38.4.557.
  7. Emani, P.K. and Maheshwari, B.K. (2008), "Nonlinear analysis of pile groups using hybrid domain method", Proceedings of 12th International Conference of IACMAG, Goa, India, October.
  8. Fenu, L., Briseghella, B. and Marano, G.C. (2019), "Simplified method to design laterally loaded piles with optimum shape and length", Struct. Eng. Mech., 71(2), 119-129. https://doi.org/10.12989/sem.2019.71.2.119.
  9. Ganjavi, B., Bararnia, M. and Hajirasouliha, I. (2018), "Seismic response modification factors for stiffness degrading soil-structure systems", Struct. Eng. Mech., 68(2), 159-170. https://doi.org/10.12989/sem.2018.68.2.159.
  10. Kausel, E., Whitman, R.V., Morray, J.P. and Elsabee, F. (1978), "The spring method for embedded foundations", Nucl. Eng. Des., 48, 377-392. https://doi.org/10.1016/0029-5493(78)90085-7.
  11. Kaynia, A.M. and Kausel, E. (1982), "Dynamic behavior of pile groups", Proceeding of 2nd International Conference on Numerical Methods in Offshore Piling, Austin, Texas.
  12. Kuhlemeyer, R.L. and Lysmer, J. (1973), "Finite element method accuracy for wave propagation problems", J. Soil. Mech. Found Div., ASCE, 99(SM5), 421-427. https://doi.org/10.1061/JSFEAQ.0001885.
  13. Lokmer, I., Herak, M., Panza, G.F. and Vaccari, F. (2002), "Amplification of strong ground motion in the city of Zagreb, Croatia, estimated by computation of synthetic seismograms", Soil Dyn. Earthq. Eng., 22, 105-113. https://doi.org/10.1016/S0267-7261(01)00061-6.
  14. Maharaj, D.K. (2003), "Load-deflection response of laterally loaded single pile by nonlinear finite element analysis", Elec. J. Geotech. Eng., 8, Paper 0342.
  15. Maheshwari, B.K. and Emani, P.K. (2015), "Three-dimensional nonlinear seismic analysis of pile groups using FE-CIFECM coupling in a hybrid domain and HiSS plasticity model", Int. J. Geomech., 15(3), 04014055-1-12. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000335
  16. Maheshwari, B.K. and Watanabe, H. (2006), "The nonlinear dynamic behavior of pile foundations: Effects of separation at the soil-pile interface", Soil. Found., 46(4), 437-448. https://doi.org/10.3208/sandf.46.437.
  17. Maheshwari, B.K., Truman, K.Z., Gould, P.L. and El-Naggar, M.H. (2004), "Three-dimensional nonlinear behavior of pile groups using finite element method in the time domain", Can. Geotech. J., 41, 118-133. https://doi.org/10.1139/t03-073
  18. Maheshwari, B.K., Truman, K.Z., Gould, P.L. and El Naggar, M.H. (2005), "Three-dimensional nonlinear seismic analysis of single piles using FEM: Effects of plasticity of soil", Int. J. Geomech., ASCE, 5(1), 35-44. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:1(35).
  19. Makris, N. and Gazetas, G. (1992), "Dynamic pile-soil-pile interaction. Part II: Lateral and seismic response", Earthq. Eng. Struct. Dyn., 21(2), 145-162. https://doi.org/10.1002/eqe.4290210204.
  20. Messioud, S., Okyay, U.S., Sbartai, B. and Dias, D. (2016), "Dynamic response of pile reinforced soils and piled foundations", Geotech. Geol. Eng., 34(3), 789-805. https://doi.org/10.1007/s10706-016-0003-0.
  21. Messioud, S., Sbartai, B. and Dias, D. (2017), "Estimation of dynamic impedance of the soil-pile-slab, and soil-pile-mattress-slab systems", Int. J. Struct. Stab. Dyn., 17(6), 1750057-1-17. https://doi.org/10.1142/S0219455417500572.
  22. Miura, K., Masuda, K., Maeda, T. and Kobori, T. (1995), "Nonlinear dynamic impedance of pile group foundation", International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, April.
  23. Nogami, T. and Konagai, K. (1988), "Time-domain flexural response of dynamically loaded single piles", J. Eng. Mech., ASCE, 114(9), 1512-1525. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:9(1512).
  24. Nogami, T., Otani, J., Konagai, K. and Chen, H.L. (1992), "The nonlinear soil-pile interaction model for the dynamic lateral motion", J. Geotech. Eng., 118(1), 89-106. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:1(89)
  25. Padron, L.A., Aznarez, J.J. and Maeso, O. (2007), "BEM-FEM coupling model for the dynamic analysis of piles and pile groups", Eng. Anal. Bound. Elem., 31, 473-484. https://doi.org/10.1016/j.enganabound.2006.11.001.
  26. Pan, H., Li, C. and Tian, L. (2020), "Seismic response and failure analyses of pile-supported transmission towers on layered ground", Struct. Eng. Mech., 76(2), 223-237. https://doi.org/10.12989/sem.2020.76.2.223.
  27. Sen, R., Davies, T.G. and Banerjee, P.K. (1985), "Dynamic analysis of piles and pile groups embedded inhomogeneous soils", Earthq. Eng. Struct. Dyn., 13(1), 53-65. https://doi.org/10.1002/eqe.4290130107.
  28. Syed, N.M. and Maheshwari, B.K. (2017), "Non-linear SSI analysis in time domain using coupled FEM-SBFEM for a soil-pile system", Geotechnique, 67(7), 572-580. https://doi.org/10.1680/jgeot.16.P.029.
  29. Tabatabaiefar, H.R., Fatahi, B., Ghabraie, K. and Zhou, W. (2015), "Evaluation of numerical procedures to determine seismic response of structures under influence of soil-structure interaction", Struct. Eng. Mech., 56(1), 27-47. https://doi.org/10.12989/sem.2015.56.1.027.
  30. Trochanis, A.M., Bielak, J. and Christiano, P. (1991), "Three-dimensional nonlinear study of piles", J. Geotech. Eng., ASCE, 117(3), 429-447. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:3(429).
  31. Wolf, J.P. (1985), Dynamic Soil-Structure-Interaction, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
  32. Wu, G. and Finn, W.D.L. (1997), "Dynamic nonlinear analysis of pile foundations using finite element method in the time domain", Can. Geotech. J., 34(1), 44-52. https://doi.org/10.1139/t96-088.