Acknowledgement
The work was supported by Natural Science Foundation of China (Grant No. 11572233) and Pre-Research Foundation (Grant No. 61400020106) as well as the Fundamental Research Funds for the Central Universities.
References
- Academic Committee of the Superalloys (2012), China Superalloys Handbook, China Zhijian Publishing House & Standards Press of China, Beijing, China.
- Basudhar, A. and Missoum, S. (2008), "Adaptive explicit decision functions for probabilistic design and optimization using support vector machines", Comput. Struct., 86(19-20), 1904-1917. https://doi.org/10.1016/j.compstruc.2008.02.008.
- Beretta, S., Foletti, S., Rusconi, E., Riva, A. and Socie, D. (2016), "A log-normal format for failure probability under LCF: Concept, validation and definition of design curve", Int. J. Fatig., 82, 2-11. https://doi.org/10.1016/j.ijfatigue.2015.08.027.
- Bourinet, J.M., Deheeger, F. and Lemaire, M. (2011), "Assessing small failure probabilities by combined subset simulation and Support Vector Machines", Struct. Saf., 33(6), 343-353. https://doi.org/10.1016/j.strusafe.2011.06.001.
- Carter, T.J. (2005), "Common failures in gas turbine blades", Eng. Fail. Anal., 12(2), 237-247. https://doi.org/10.1016/j.engfailanal.2004.07.004.
- Coffin, L.F. (1954), "A study of the effects of cyclic thermal stress in a ductile metal", Trans. ASME, 76, 931-950.
- Du, W., Luo, Y., Wang, Y. and Ma, L. (2019a), "A general framework for fatigue reliability analysis of a high temperature component", Qual. Reliab. Eng. Int., 35(1), 292-303. https://doi.org/10.1002/qre.2399.
- Du, W., Wang, Y. and Luo, Y. (2019), "A reliability-based fatigue design for mechanical components under material variability", Qual. Reliab. Eng. Int., 36(5), 1-15. https://doi.org/10.1002/qre.2586.
- Dungey, C. and Bowen, P. (2004), "The effect of combined cycle fatigue upon the fatigue performance of Ti-6Al-4V fan blade material", J. Mater. Proc. Technol., 153(22), 374-379. https://doi.org/10.1016/j.jmatprotec.2004.04.403.
- Gao, H., Wang, A., Zio, E. and Bai, G. (2020), "An integrated reliability approach with improved importance sampling for low-cycle fatigue damage prediction of turbine disks", Reliab. Eng. Syst. Saf., 199, 106819. https://doi.org/10.1016/j.ress.2020.106819.
- Gao, H.F. and Bai, G.C. (2015), "Reliability analysis on resonance for low-pressure compressor rotor blade based on least squares support vector machine with leave-one-out cross-validation", Adv. Mech. Eng., 7(4), 1-11. https://doi.org/10.1088/1757-899X/225/1/012102.
- Gao, H.F., Fei, C.W., Bai, G.C. and Ding, L. (2016), "Reliability-based low-cycle fatigue damage analysis for turbine blade with thermo-structural interaction", Aerosp. Sci. Technol., 49, 289-300. https://doi.org/10.1016/j.ast.2015.12.017.
- Gao, H.F., Wang, A.J., Bai, G.C., Wei, C.M. and Fei, C.W. (2018), "Substructure-based distributed collaborative probabilistic analysis method for low-cycle fatigue damage assessment of turbine blade-disk", Aerosp. Sci. Technol., 79, 636-646. https://doi.org/10.1016/j.ast.2018.06.023.
- Gao, H.F., Zio, E., Guo, J.J., Bai, G.C. and Fei, C.W. (2020a), "Dynamic probabilistic-based LCF damage assessment of turbine blades regarding time-varying multi-physical field loads", Eng. Fail. Anal., 108, 104193. https://doi.org/10.1016/j.engfailanal.2019.104193.
- Hong, L., Li, H. and Peng, K. (2020), "A combined radial basis function and adaptive sequential sampling method for structural reliability analysis", Appl. Math. Model., 90, 375-393. https://doi.org/10.1016/j.apm.2020.08.042.
- Hou, N.X., Wen, Z.X., Yu, Q.M. and Yue, Z.F. (2009), "Application of a combined high and low cycle fatigue life model on life prediction of SC blade", Int. J. Fatig., 31, 616-619. https://doi.org/10.1016/j.ijfatigue.2008.03.021.
- Hu, D.Y. and Wang, R.Q. (2013), "Combined fatigue experiments on full scale turbine components", Aircraft Eng. Aerosp. Technol., 85(1), 4-9. https://doi.org/10.1108/00022661311294085.
- Kumari, S., Satyanarayana, D. and Srinivas, M. (2014), "Failure analysis of gas turbine rotor blades", Eng. Fail. Anal., 45, 234-244. https://doi.org/10.1016/j.engfailanal.2014.06.003.
- Li, H., Deng, Z.M., Golilarz, N.A. and Soares, C.G. (2021a), "Reliability analysis of the main drive system of a CNC machine tool including early failures", Reliab. Eng. Syst. Saf., 215, 107846. https://doi.org/10.1016/j.ress.2021.107846.
- Li, H., Diaz, H. and Soares, C.G. (2021), "A developed failure mode and effect analysis for floating offshore wind turbine support structures", Renew. Energy, 164, 133-145. https://doi.org/10.1016/j.renene.2020.09.033.
- Li, H., Diaz, H. and Soares, C.G. (2021b), "A failure analysis of floating offshore wind turbines using AHP-FMEA methodology", Ocean Eng., 234, 109261. https://doi.org/10.1016/j.oceaneng.2021.109261.
- Li, H., Huang, C.G. and Soares, C.G. (2022), "A real-time inspection and opportunistic maintenance strategies for floating offshore wind turbines", Ocean Eng., 256, 111433. https://doi.org/10.1016/j.oceaneng.2022.111433.
- Li, H., Huang, H.Z., Li, Y.F. and Zhou, J. (2018), "Physics of failure-based reliability prediction of turbine blades using multisource information fusion", Appl. Soft Comput., 72, 624-635. https://doi.org/10.1016/j.asoc.2018.05.015.
- Li, H., Soares, C.G. and Huang, H.Z. (2020a), "Reliability analysis of floating offshore wind turbine using Bayesian network", Ocean Eng., 217, 107827. https://doi.org/10.1016/j.oceaneng.2020.107827.
- Li, H., Teixeira, A.P. and Soares, C.G. (2020), "A two-stage failure mode and effect analysis of offshore wind turbines", Renew. Energy, 162, 1438-1461. https://doi.org/10.1016/j.renene.2020.08.001.
- Li, W., Li, C., Gao, B.L. and Xiao, M. (2020b), "Risk based design optimization under hybrid uncertainties", Eng. Comput., 1, 1-13. https://doi.org/10.1007/s00366-020-01196-4.
- Manson, S.S. (1954), "Behavior of materials under conditions of thermal stress", National Advisory Commission on Aeronautics, Report 1170, Lewis Flight Propulsion Laboratory, Cleveland.
- Niu, X.P., Wang, R.Z., Liao, D., Zhu, S.P., Zhang, X.C. and Keshtegar, B. (2020), "Probabilistic modeling of uncertainties in fatigue reliability analysis of turbine bladed disks", Int. J. Fatig., 142, 105912. https://doi.org/10.1016/j.ijfatigue.2020.105912.
- Pan, Q. and Dias, D. (2017), "An efficient reliability method combining adaptive Support Vector Machine and Monte Carlo Simulation", Struct. Saf., 67, 85-95. https://doi.org/10.1016/j.strusafe.2017.04.006.
- Schweizer, C., Seifert, T., Nieweg, B., von Hartrott, P. and Riedel, H. (2011), "Mechanisms and modeling of fatigue crack growth under combined low and high cycle fatigue loading", Int. J. Fatig., 33(2), 194-202. https://doi.org/10.1016/j.ijfatigue.2010.08.008.
- Socie, D. and Morrow, J. (1980), "Review of contemporary approaches to fatigue damage analysis", Risk and Failure Analysis for Improved Performance and Reliability, Eds. Burke, J.J. and Weiss, V., Plenum Publication Corp., New York, NY
- Song, H., Choi, K.K., Lee, I., Zhao, L. and Lamb, D. (2011), "Adaptive virtual support vector machine for the reliability analysis of high-dimensional problems", Struct. Multidisc. Optim., 47(4), 479-491. https://doi.org/10.1007/s00158-012-0857-6.
- Song, L.K., Bai, G.C. and Fei, C.W. (2019), "Probabilistic LCF life assessment for turbine discs with DC strategy-based wavelet neural network regression", Int. J. Fatig., 119, 204-219. https://doi.org/10.1016/j.ijfatigue.2018.10.005.
- Song, L.K., Fei, C.W., Wen, J. and Bai, G.C. (2017), "Multi-objective reliability-based design optimization approach of complex structure with multi-failure modes", Aerosp. Sci. Technol., 64, 52-62. https://doi.org/10.1016/j.ast.2017.01.018.
- Wang, B.W., Tang, W.Z., Song, L.K. and Bai, G.C. (2020), "PSOLSSVR: A surrogate modeling approach for probabilistic flutter evaluation of compressor blade", Struct., 28, 1634-1645. https://doi.org/10.1016/j.istruc.2020.10.007.
- Xiao, N.C., Zuo, M.J. and Zhou, C. (2018), "A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis", Reliab. Eng. Syst. Saf., 169, 330-338. https://doi.org/10.1016/j.ress.2017.09.008.
- Yu, S. and Li, Y. (2021), "Active learning Kriging model with adaptive uniform design for time-dependent reliability analysis". IEEE Access, 9, 1-10. https://doi.org/10.1109/ACCESS.2021.3091875.
- Yuan, R. and Li, H. (2017), "A multidisciplinary coupling relationship coordination algorithm using the hierarchical control methods of complex systems and its application in multidisciplinary design optimization", Adv. Mech. Eng., 9(1), 1-11. https://doi.org/10.1177/1687814016685222.
- Yuan, R., Li, H. and Wang, Q. (2018), "An enhanced genetic algorithm-based multi-objective design optimization strategy", Adv. Mech. Eng., 10(7), 1-6. https://doi.org/10.1177/1687814018784836.
- Yuan, R., Li, H. and Wang, Q. (2019a), "Simulation-based design and optimization and fatigue characteristics for high-speed backplane connector", Adv. Mech. Eng., 11(6), 1-10. https://doi.org/10.1177/1687814019856752.
- Yuan, R., Li, H., Gong, Z., Tang, M. and Li, W. (2017a), "An enhanced Monte Carlo simulation-based design and optimization method and its application in the speed reducer design", Adv. Mech. Eng., 9(9), 1-7. https://doi.org/10.1177/1687814017728648.
- Yuan, R., Meng, D. and Li, H. (2016), "Multidisciplinary reliability design optimization using an enhanced saddlepoint approximation in the framework of sequential optimization and reliability analysis", Proc. Inst. Mech. Eng.-Part O: J. Risk Reliab., 230(6), 570-578. https://doi.org/10.1177/1748006X16673500.
- Yuan, R., Tang, M., Wang, H. and Li, H. (2019), "A reliability analysis method of accelerated performance degradation based on Bayesian strategy", IEEE Access, 7, 169047-169054. https://doi.org/10.1109/ACCESS.2019.2952337.
- Yue, P., Ma, J., Huang, H., Shi, Y. and Zu, J.W. (2021b), "Threshold damage-based fatigue life prediction of turbine blades under combined high and low cycle fatigue", Int. J. Fatig., 150, 106323. https://doi.org/10.1016/j.ijfatigue.2021.106323.
- Yue, P., Ma, J., Zhou, C.H., Jiang, H. and Wriggers, P. (2020), "A fatigue damage accumulation model for reliability analysis of engine components under combined cycle loadings", Fatig. Fract. Eng. Mater. Struct., 43(8), 1880-1892. https://doi.org/10.1111/ffe.13246.
- Yue, P., Ma, J., Zhou, C.H., Zu, W.J. and Shi, B.Q. (2021a), "Dynamic fatigue reliability analysis of turbine blades under the combined high and low cycle loadings", Int. J. Damage Mech., 30(6), 828-844. https://doi.org/10.1177/1056789520986854.
- Zeng, J.Y., Tan, Z.H., Matsunaga, T. and Shirai, T. (2019), "Generalization of parameter selection of SVM and LS-SVM for regression", Mach. Learn. Knowl. Extra., 1, 745-755. https://doi.org/10.3390/make1020043.
- Zhang, C.Y., Lu, C., Fei, C. W., Wei, W.L., Hao, G.P. and Sun, X.D. (2015a), "Reliability analysis of aeroengine blade based on extremum response surface method", J. Harbin Univ. Sci. Technol., 20(2), 5-10.
- Zhang, C.Y., Lu, C., Fei, C.W., Liu, L.J., Choy, Y.S. and Su, X.G. (2015), "Multiobject reliability analysis of turbine blisk with multidiscipline under multiphysical field interaction", Adv. Mater. Sci. Eng., 2015, Article ID 649046. https://doi.org/10.1155/2015/649046.
- Zhang, C.Y., Wei, J.S., Jing, H.Z., Fei, C.W. and Tang, W.Z. (2019), "Reliability-based low fatigue life analysis of turbine blisk with generalized regression extreme neural network method". Mater., 12(9), 1545-1560. https://doi.org/10.3390/ma12091545.
- Zhang, Y.K., Guo, S.X., Zhang, Z.P. and Shang, B.L. (2019a), "Modified three-parameter model to predict compressor blade fatigue life under vibration loading", J. Aerosp. Eng., 32(4), 04019034. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001009.
- Zhou, Q., Wang, Y., Jiang, P., Shao, X., Choi, S. K., Hu, J., ... & Meng, X. (2017), "An active learning radial basis function modeling method based on self-organization maps for simulation-based design problems", Knowl.-Bas. Syst., 131, 10-27. https://doi.org/10.1016/j.knosys.2017.05.025.
- Zhu, S.P., Foletti, S. and Beretta, S. (2017), "Probabilistic framework for multiaxial LCF assessment under material variability", Int. J. Fatig., 103, 371-385. https://doi.org/10.1016/j.ijfatigue.2017.06.019.
- Zhu, S.P., Liu, Q., Lei, Q. and Wang, Q.Y. (2018a), "Probabilistic fatigue life prediction and reliability assessment of a high pressure turbine disc considering load variations", Int. J. Damage Mech., 27(10), 1569-1588. https://doi.org/10.1177/1056789517737132.
- Zhu, S.P., Liu, Q., Zhou, J. and Yu, Z.Y. (2018b), "Fatigue reliability assessment of turbine discs under multi-source uncertainties", Fatig. Fract. Eng. Mater. Struct., 41(6), 1291-1305. https://doi.org/10.1111/ffe.12772.
- Zhu, S.P., Yu, Z.Y., Correia, J., Jesus, A.D. and Berto, F. (2018), "Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials", Int. J. Fatig., 112, 279-288. https://doi.org/10.1016/j.ijfatigue.2018.03.028.
- Zio, E. (2018), "The future of risk assessment", Reliab. Eng. Syst. Saf., 177(9), 176-190. https://doi.org/10.1016/j.ress.2018.04.020.