DOI QR코드

DOI QR Code

PGA estimates for deep soils atop deep geological sediments -An example of Osijek, Croatia

  • Bulajic, Borko D. (Faculty of Technical Sciences, University of Novi Sad) ;
  • Hadzima-Nyarko, Marijana (Faculty of Civil Engineering and Architecture Osijek, Josip Juraj Strossmayer University of Osijek) ;
  • Pavic, Gordana (Faculty of Civil Engineering and Architecture Osijek, Josip Juraj Strossmayer University of Osijek)
  • Received : 2021.07.20
  • Accepted : 2022.06.30
  • Published : 2022.08.10

Abstract

In this study, the city of Osijek is used as a case study area for low to medium seismicity regions with deep soil over deep geological deposits to determine horizontal PGA values. For this reason, we propose new regional attenuation equations for PGA that can simultaneously capture the effects of deep geology and local soil conditions. A micro-zoning map for the city of Osijek is constructed using the derived empirical scaling equations and compared to all prior seismic hazard estimates for the same area. The findings suggest that the deep soil atop deep geological sediments results in PGA values that are only 6 percent larger than those reported at rock soil sites atop geological rocks. Given the rarity of ground motion records for deep soils atop deep geological layers around the world, we believe this case study is a start toward defining more reliable PGA estimates for similar areas.

Keywords

References

  1. Amaro-Mellado, J.L. and Tien Bui, D. (2020), "GIS-based mapping of seismic parameters for the pyrenees", ISPRS Int. J. Geo-Inform., 9(7), 452. https://doi.org/10.3390/ijgi9070452.
  2. Amaro-Mellado, J.L., Melgar-Garcia, L., Rubio-Escudero, C. and Gutierrez-Aviles, D. (2021), "Generating a seismogenic source zone model for the Pyrenees: A GIS-assisted triclustering approach", Comput. Geosci., 150, 104736. https://doi.org/10.1016/j.cageo.2021.104736.
  3. Amaro-Mellado, J.L., Morales-Esteban, A., Asencio-Cortes, G. and Martinez-Alvarez, F. (2017), "Comparing seismic parameters for different source zone models in the Iberian Peninsula", Tectonophys., 717, 449-472. https://doi.org/10.1016/j.tecto.2017.08.032.
  4. Ambraseys, N., Douglas, J., Margaris, B., Sigbjornsson, R., Berge-Thierry, C., Suhadolc, P., Costa, G. and Smit P. (2004), "Dissemination of European strong-motion data, Volume 2", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.
  5. Ambraseys, N., Douglas, J., Margaris, B., Sigbjornsson, R., Smit, P. and Suhadolc, P. (2002), "Internet site for European strong motion data", Proceedings of the 12th European Conference on Earthquake Engineering, London, UK, September.
  6. Ang, A.H. and Tang, W.H. (2006), Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering, John Wiley & Sons, New York, NY, USA.
  7. Aziz, M., Khan, T.A. and Ahmed, T. (2017), "Spatial interpolation of geotechnical data: A case study for Multan City, Pakistan", Geomech. Eng., 13(3), 475-488. https://doi.org/10.12989/gae.2017.13.3.475.
  8. Balazs, A., Matenco, L., Magyar, I., Horvath, F. and Cloetingh, S. (2016), "The link between tectonics and sedimentation in back-arc basins: New genetic constraints from the analysis of the Pannonian Basin", Tectonics, 35(6), 1526-1559. https://doi.org/10.1002/2015TC004109.
  9. Banak, A., Mandic, O., Sprovieri, M., Lirer, F. and Pavelic, D. (2016), "Stable isotope data from loess malacofauna: Evidence for climate changes in the Pannonian Basin during the Late Pleistocene", Quat. Int., 415, 15-24. https://doi.org/10.1016/j.quaint.2015.10.102.
  10. Bazzurro, P. and Cornell, C.A. (1999), "Disaggregation of seismic hazard", Bull. Seismol. Soc. Am., 89, 501-520. https://doi.org/10.1785/BSSA0890020501.
  11. Bielik, M., Makarenko, I., Csicsay, K., Legostaeva, O., Starostenko, V., Savchenko, A., Simonova, B., Dererova, J., Fojtikova, L., Pasteka, R. and Vozar, J. (2018), "The refined Moho depth map in the Carpathian-Pannonian region", Contrib. Geophys. Geodesy, 48(2), 179-190. https://doi.org/10.2478/congeo-2018-0007.
  12. Bilgin, H. and Huta, E. (2018), "Earthquake performance assessment of low and mid-rise buildings: Emphasis on URM buildings in Albania", Eng. Struct., 14(6), 412-427. https://doi.org/10.12989/eas.2018.14.6.599.
  13. Bilgin, H. and Hysenlliu, M. (2020), "Comparison of near and far-fault ground motion effects on low and mid-rise masonry buildings", J. Build. Eng., 30(3), 101248. https://doi.org/10.1016/j.jobe.2020.101248.
  14. Bilgin, H. and Korini, O. (2012), "Seismic capacity evaluation of unreinforced masonry residential buildings in Albania", Nat. Hazard. Earth Syst. Sci., 12(12), 3753-3764. https://doi.org/10.5194/nhess-12-3753-2012.
  15. Bulajic, B.D., Bajic, S. and Stojnic, N. (2018), "The effects of geological surroundings on earthquake-induced snow avalanche prone areas in the Kopaonik region", Cold Reg. Sci. Technol., 149, 29-45. https://doi.org/10.1016/j.coldregions.2018.02.005.
  16. Bulajic, B.D., Hadzima-Nyarko, M. and Pavic, G. (2021a), "Horizontal UHS amplitudes for regions with deep soil atop deep geological sediments-An example of Osijek, Croatia", Appl. Sci., 11(14), 6296. https://doi.org/10.3390/app11146296.
  17. Bulajic, B.D., Hadzima-Nyarko, M. and Pavic, G. (2021b), "Vertical to horizontal UHS ratios for low to medium seismicity regions with deep soil atop deep geological sediments-An example of the city of Osijek, Croatia", Appl. Sci., 11(15), 6782. https://doi.org/10.3390/app11156782.
  18. Bulajic, B.D., Manic, M.I. and Ladinovic, D. (2013), "Effects of shallow and deep geology on seismic hazard estimates-A case study of pseudo-acceleration response spectra for the northwestern Balkans", Nat. Hazard., 69(1), 573-588. https://doi.org/10.1007/s11069-013-0726-7.
  19. Bulajic, B.D., Pavic, G. and Hadzima-Nyarko, M. (2022), "PGA vertical estimates for deep soils and deep geological sediments-A case study of Osijek (Croatia)", Comput. Geosci., 158, 104985. https://doi.org/10.1016/j.cageo.2021.104985.
  20. Chioccarelli, E., Cito, P., Iervolino, I. and Giorgio, M. (2019), "REASSESS V2.0: Software for single- and multi-site probabilistic seismic hazard analysis", Bull. Earthq. Eng., 17(4), 1769-1793. https://doi.org/10.1007/s10518-018-00531-x.
  21. Cornell, C.A. (1968), "Engineering seismic risk analysis", Bull. Seismol. Soc. Am., 58, 1583-1606. https://doi.org/10.1785/BSSA0580051583.
  22. Douglas, J. (2003), "Earthquake ground motion estimation using strong motion records: A review of equations for the estimation of peak ground acceleration and response spectral ordinates", Earth-Sci. Rev., 61, 43-104. https://doi.org/10.1016/S0012-8252(02)00112-5.
  23. EMSC-CSEM (2020) M 5.4-CROATIA-2020-03-22 05:24:02 UTC, European-Mediterranean Seismological Centre (EMSC-CSEM), https://www.emsccsem.org/Earthquake/earthquake.php?id=840695#scientific.
  24. EN 1998-1:2004 (2004), Design of Structures for Earthquake Resistance, Part 1: General Rules, Seismic Actions and Rules for Buildings, CEN-European Committee for Standardization, Brussels, Belgium.
  25. Ganas, A., Elias, P., Valkaniotis, S., Tsironi, V., Karasante, I. and Briole P. (2021), "Petrinja earthquake moved crust 10 feet", Temblor. http://doi.org/10.32858/temblor.156.
  26. Giardini, D., Woessner, J., Danciu, L., Crowley, H., Cotton, F., Grunthal, G., Pinho, R., Valensise, L. and the SHARE Consortium Team (2013), "European Seismic Hazard Map for Peak Ground Acceleration, 10% Exceedance Probabilities in 50 years", The SHARE Consortium.
  27. Gutenberg, B. and Richter, C. (1944), "Frequency of earthquakes in California", Bull. Seismol. Soc. Am., 34, 185-188. https://doi.org/10.1785/BSSA0340040185.
  28. HRN EN 1998-1:2011/NA:2011 (2011), Eurocode 8, Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings-National Annex, Hrvatski Zavod za Norme, Zagreb, Croatia.
  29. Inel, M., Ozmen, H.B. and Bilgin, H. (2008), "Re-evaluation of building damage during recent earthquakes in Turkey", Eng. Struct., 30, 412-427. https://doi.org/10.1016/j.engstruct.2007.04.012.
  30. Isik, E., Buyuksarac, A., Ekinci, Y.L., Aydin, M.C. and Harirchian, E. (2020), "The effect of site-specific design spectrum on earthquake-building parameters: A case study from the Marmara Region (NW Turkey)", Appl. Sci., 10, 7247. https://doi.org/10.3390/app10207247.
  31. Isik, E., Kutanis, M. and Bal, I.E. (2016), "Displacement of the buildings according to site-specific earthquake spectra". Period. Polytech. Civil Eng., 60(1), 37-43. https://doi.org/10.3311/PPci.7661.
  32. Jakka, R.S., Hussain, M. and Sharma, M.L. (2015), "Effects on amplification of strong ground motion due to deep soils", Geomech. Eng., 8(5), 663-674. https://doi.org/10.12989/gae.2015.8.5.663.
  33. Javadi, A.A. and Rezania, M. (2009), "Applications of artificial intelligence and data mining techniques in soil modeling", Geomech. Eng., 1(1), 53-74. https://doi.org/10.12989/gae.2009.1.1.053.
  34. Jordanovski, Lj.R., Lee, V.W., Manic, M.I., Olumceva, T., Sinadnovski, C., Todorovska, M.I. and Trifunac, M.D. (1987), "Strong earthquake ground motion data in EQINFOS: Yugoslavia, Part I", Report No. 87-05, Department of Civil Engineering, University of Southern California, Los Angeles, California, USA.
  35. Kaplan, H., Bilgin, H., Yilmaz, S., Binici, H. and Oztas, A. (2010), "Structural damages of L'Aquila (Italy) earthquake", Nat. Hazard. Earth Syst. Sci., 10, 499-507. https://doi.org/10.5194/nhess-10-499-2010.
  36. Lee, V.W. (1987), "Influence of local soil and geologic site conditions on Pseudo Relative Velocity spectrum amplitudes of recorded strong motion accelerations", Report No. 87-06, Department of Civil Engineering, University of Southern California, Los Angeles, California, USA.
  37. Lee, V.W. and Manic, M.I. (1994), "Empirical scaling of response spectra in former Yugoslavia", Proceedings of the 10th Eur. Conf. on Earthq. Eng., Vienna, Austria, 4, 2567-2572.
  38. Lee, V.W. and Trifunac, M.D. (1993), "Empirical scaling of Fourier amplitude spectra in former Yugoslavia", Eur. Earthq. Eng., 7, 47-61.
  39. Lee, V.W. and Trifunac, M.D. (2010), "Should average shear wave velocity in the top 30 m of soil be the only local site parameter used to describe seismic amplification?", Soil. Dyn. Earthq. Eng., 30(11), 1250-1258. https://doi.org/10.1016/j.soildyn.2010.05.007.
  40. Lee, V.W., Manic, M.I., Bulajic, B.D., Herak, D., Herak, M. and Trifunac, M.D. (2015), "Microzonation of Banja Luka for performance-based earthquake-resistant design", Soil Dyn. Earthq. Eng., 78, 71-88. https://doi.org/10.1016/j.soildyn.2014.06.035.
  41. Lee, V.W., Trifunac, M.D., Bulajic, B.D. and Manic, M.I. (2016a), "A preliminary empirical model for frequency-dependent attenuation of Fourier amplitude spectra in Serbia from the Vrancea earthquakes", Soil Dyn. Earthq. Eng., 83, 167-179. https://doi.org/10.1016/j.soildyn.2015.12.004.
  42. Lee, V.W., Trifunac, M.D., Bulajic, B.D. and Manic, M.I. (2016b), "Preliminary empirical scaling of pseudo relative velocity spectra in Serbia from the Vrancea earthquakes", Soil Dyn. Earthq. Eng., 86, 41-54. https://doi.org/10.1016/j.soildyn.2016.03.007.
  43. Lee, V.W., Trifunac, M.D., Bulajic, B.D., Mani, M.I., Herak, D. and Herak, M. (2017a), "Seismic microzoning of Belgrade", Soil Dyn. Earthq. Eng., 97, 395-412. https://doi.org/10.1016/j.soildyn.2017.02.002.
  44. Lee, V.W., Trifunac, M.D., Bulajic, B.D., Manic, M.I., Herak, D., Herak M. and Dimov, G. (2017b), "Seismic microzoning in Skopje, Macedonia", Soil Dyn. Earthq. Eng., 98, 166-182. https://doi.org/10.1016/j.soildyn.2017.04.007.
  45. Lee, V.W., Trifunac, M.D., Bulajic, B.D., Manic, M.I., Herak, D., Herak, M., Dimov, G. and Gicev, V. (2017c), "Seismic microzoning of Stip in Macedonia", Soil Dyn. Earthq. Eng., 98, 54-66. https://doi.org/10.1016/j.soildyn.2017.04.003.
  46. Lee, V.W., Trifunac, M.D., Herak, M., Zivcic, M. and Herak, D. (1990), "ML SM computed from strong motion accelerograms recorded in Yugoslavia", Earthq. Eng. Struct. Dyn., 19(8), 1167-1179. https://doi.org/10.1002/eqe.4290190807.
  47. Magas, N., Mamuzic, P., Maticec, D., Prtoljan, B., Galovic, I., Sarkotic Slat, M., Glovacki Jernej, Z. and Jagacic, T. (1987), "Basic geological map of SFRY-Osijek, L34-86", Geological Institute, Federal Geological Institute of Belgrade, Zagreb.
  48. Manic, M.I., Bulajic, B.D. and Trifunac, M.D. (2015), "A note on peak accelerations computed from sliding of objects during the 1969 Banja Luka earthquakes in former Yugoslavia", Soil Dyn. Earthq. Eng., 77, 164-176. https://doi.org/10.1016/j.soildyn.2015.04.021.
  49. McGuire, R.K. (1976), "Fortran computer program for seismic risk analysis", Technical Report 76-77, US Geological Survey.
  50. McGuire, R.K. (1995), "Probabilistic seismic hazard analysis and design earthquakes: Closing the loop", Bull. Seismol. Soc. Am., 85(5), 1275-1284. https://doi.org/10.1785/BSSA0850051275.
  51. Morales-Esteban, A., Martinez-Alvarez, F., Scitovski, S. and Scitovski, R. (2014), "A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning", Comput. Geosci., 73, 132-141. https://doi.org/10.1016/j.cageo.2014.09.003.
  52. Morales-Esteban, A., Martinez-Alvarez, F., Scitovski, S. and Scitovski, R. (2021), "Mahalanobis clustering for the determination of incidence-magnitude seismic parameters for the Iberian Peninsula and the Republic of Croatia", Comput. Geosci., 156, 104873. https://doi.org/10.1016/j.cageo.2021.104873.
  53. Official Gazette of SFRY (1964), Temporary Technical Regulations for Construction in Seismic Areas, Official Gazette of SFRY, 39/64, Belgrade, SFRY.
  54. Official Gazette of SFRY (1982), Book of Rules on Technical Norms for Construction of High-rise Buildings in Seismic Regions, Official Gazette of SFRY, 31/81, 49/82, Belgrade, SFRY.
  55. Official Gazette of SFRY (1990), Book of Rules on Technical Norms for Construction of High-Rise Buildings in Seismic Regions, Official Gazette of SFRY, 31/81, 49/82, 29/83, 21/88,52/90.
  56. Onturk, K., Bol, E., Ozocak, A. and Edil, T.B. (2020), "Effect of grain size on the shear strength of unsaturated silty soils", Geomech. Eng., 23(4), 301-311. https://doi.org/10.12989/gae.2020.23.4.301.
  57. Pagani, M., Garcia-Pelaez, J., Gee, R., Johnson, K., Poggi, V., Styron, R., Weatherill, G., Simionato, M., Vigano, D., Danciu, L. and Monelli, D. (2018), Global Earthquake Model (GEM), Seismic Hazard Map (Version 2018.1 - December 2018).
  58. Pavic, G., Hadzima-Nyarko, M. and Bulajic, B. (2020a), "A contribution to a UHS-based seismic risk assessment in Croatia-A case study for the city of Osijek", Sustain., 12(5), 1-24. https://doi.org/10.3390/su12051796.
  59. Pavic, G., Hadzima-Nyarko, M., Bulajic, B. and Jurkovic, Z. (2020b), "Development of seismic vulnerability and exposure models-A case study of Croatia", Sustain., 12(3), 1-24. https://doi.org/10.3390/su12030973.
  60. Peng, Y., Wang, Z., Woolery, E.W., Lyu, Y., Carpenter, N.S., Fang, Y. and Huang, S. (2020), "Ground-motion site effect in the Beijing metropolitan area", Eng. Geol., 266, 105395. https://doi.org/10.1016/j.enggeo.2019.105395.
  61. Pikija, M. and Sikic, K. (1991), "Osnovna geoloska karta 1:100.000 list Mohac", Fond Strucnih Dokumenata IGI, Zagreb.
  62. Prelogovic, E. and Cvijanovic, D. (1981), "Potres u Medvednici 1880. Godine", Geoloski Vjesnik, 34, 137-146.
  63. Saffarian, M.A. and Bagheripour, M.H. (2014a), "Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part I: Basic formulation and linear HFTD", Geomech. Eng., 6(6), 517-530. https://doi.org/10.12989/gae.2014.6.6.517.
  64. Saffarian, M.A. and Bagheripour, M.H. (2014b), "Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part II: Nonlinear HFTD and numerical examples", Geomech. Eng., 6(6). 531-544. https://doi.org/10.12989/gae.2014.6.6.531.
  65. Sahin, A. (2015a), "Dynamic simulation models for seismic behavior of soil systems-Part I: Block diagrams", Geomech. Eng., 9(2), 145-167. https://doi.org/10.12989/gae.2015.9.2.145.
  66. Sahin, A. (2015b), "Dynamic simulation models for seismic behavior of soil systems-Part II: Solution algorithm and numerical applications", Geomech. Eng., 9(2), 169-193. https://doi.org/10.12989/gae.2015.9.2.169.
  67. Seed, H.B., Murark, R., Lysmer, J. and Idriss, I.M. (1976b), "Relationships of maximum acceleration, maximum velocity, distance from source, and local site conditions for moderately strong earthquakes", Bull. Seismol. Soc. Am., 66, 1323-1342. https://doi.org/10.1785/BSSA0660041323.
  68. Seed, H.B., Ugas, C. and Lysmer, J. (1976a), "Site-dependent spectra for earthquake-resistant design", Bull. Seismol. Soc. Am., 66, 221-243. https://doi.org/10.1785/BSSA0660010221.
  69. Skoko, D., Prelogovic, E. and Aljinovic, B. (1987), "Geological structure of the Earth's crust above the Moho discontinuity in Yugoslavia", Geophys. J. R. Astron. Soc., 89, 379-382. https://doi.org/10.1111/j.1365-246X.1987.tb04434.x.
  70. Sonmezer, Y.B. and Celiker, M. (2020), "Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect", Geomech. Eng., 20(2), 131-146. https://doi.org/10.12989/gae.2020.20.2.131.
  71. Sonmezer, Y.B., Bas, S., Isik, N.S. and Akbas, S.O. (2018), "Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale", Geomech. Eng., 16(4), 435-448. https://doi.org/10.12989/gae.2018.16.4.435.
  72. SSoS (2021), Accelerograms Recorded During March 10, 2010 Pec and November 03, 2010 Kraljevo Earthquakes. Seismological Survey of Serbia (SSoS), Republic of Serbia. http://www.seismo.gov.rs/O%20zavodu/Infol.htm.
  73. Stucchi, M., Rovida, A., Gomez Capera, A., Alexandre, P., Camelbeeck, T., Demircioglu, M.B., ... & Musson, R.M.W. al. (2013), "The SHARE European Earthquake Catalogue (SHEEC) 1000-1899", J. Seismol., 17, 523-544. https://doi.org/10.1007/s10950-012-9335-2.
  74. Tavakoli, H.R., Amiri, M. T., Abdollahzade, G. and Janalizade, A. (2016), "Site effect microzonation of Babol, Iran", Geomech. Eng., 16(6), 821-845. https://doi.org/10.12989/gae.2016.11.6.821.
  75. Timko, M., Kovacs, I. and Weber, Z. (2019), "3D P-wave velocity image beneath the Pannonian Basin using traveltime tomography", Acta Geodaetica et Geophysica, 54, 373-386. https://doi.org/10.1007/s40328-019-00267-3.
  76. Trifunac, M.D. (1990), "How to model amplification of strong earthquake motions by local soil and geologic site conditions", Earthq. Eng. Struct. Dyn., 19(6), 833-846. https://doi.org/10.1002/eqe.4290190605.
  77. Trifunac, M.D. and Brady, A.G. (1975), "On the correlation of seismic intensity scales with the peaks of recording strong ground motion", Bull. Seismol. Soc. Am., 65, 139-162. https://doi.org/10.1785/BSSA0650010139.
  78. Trifunac, M.D., Lee, V.W., Zivcic, M. and Manic, M.I. (1991), "On the correlation of Mercalli-Cancani-Sieberg intensity scale in Yugoslavia with the peaks of recorded strong earthquake ground motion", Eur. Earthq. Eng., 5, 27-33. https://doi.org/10.1785/BSSA0650010139.
  79. UNESCO (1974), Catalogue of Earthquakes, Part I, 1901-1970, Part II, Prior to 1901, UNDP/UNESCO Survey of the Seismicity of the Balkan Region, Eds: Schebalin, N.V., Karnik, V., Hadzievski, D., UNESCO, Skopje.
  80. USGS (2017), Earthquake Catalog for all Earthquakes with Mw≥2.5 in the Period 1900-2017 for the Geographic Region between 40.5° N and 47.5° N, and 12.5° E and 24.5° E. https://earthquake.usgs.gov/earthquakes/search/, last accessed on February 23, 2017.
  81. Woessner, J., Laurentiu, D., Giardini, D., Crowley, H., Cotton, F., Grunthal, G., ... & Stucchi, M. (2015), "The 2013 European Seismic Hazard Model: key components and results", Bull. Earthq. Eng., 13(12), 3553-3596. https://doi.org/10.1007/s10518-015-9795-1.