DOI QR코드

DOI QR Code

Decision based uncertainty model to predict rockburst in underground engineering structures using gradient boosting algorithms

  • Kidega, Richard (Department of Mining and Mineral Processing Engineering, School of Mines and Engineering, Taita Taveta University) ;
  • Ondiaka, Mary Nelima (Department of Mining and Mineral Processing Engineering, School of Mines and Engineering, Taita Taveta University) ;
  • Maina, Duncan (Department of Mining and Mineral Processing Engineering, School of Mines and Engineering, Taita Taveta University) ;
  • Jonah, Kiptanui Arap Too (Department of Mining and Mineral Processing Engineering, School of Mines and Engineering, Taita Taveta University) ;
  • Kamran, Muhammad (Department of Mining Engineering, Institute Technology of Bandung)
  • 투고 : 2022.03.31
  • 심사 : 2022.07.05
  • 발행 : 2022.08.10

초록

Rockburst is a dynamic, multivariate, and non-linear phenomenon that occurs in underground mining and civil engineering structures. Predicting rockburst is challenging since conventional models are not standardized. Hence, machine learning techniques would improve the prediction accuracies. This study describes decision based uncertainty models to predict rockburst in underground engineering structures using gradient boosting algorithms (GBM). The model input variables were uniaxial compressive strength (UCS), uniaxial tensile strength (UTS), maximum tangential stress (MTS), excavation depth (D), stress ratio (SR), and brittleness coefficient (BC). Several models were trained using different combinations of the input variables and a 3-fold cross-validation resampling procedure. The hyperparameters comprising learning rate, number of boosting iterations, tree depth, and number of minimum observations were tuned to attain the optimum models. The performance of the models was tested using classification accuracy, Cohen's kappa coefficient (k), sensitivity and specificity. The best-performing model showed a classification accuracy, k, sensitivity and specificity values of 98%, 93%, 1.00 and 0.957 respectively by optimizing model ROC metrics. The most and least influential input variables were MTS and BC, respectively. The partial dependence plots revealed the relationship between the changes in the input variables and model predictions. The findings reveal that GBM can be used to anticipate rockburst and guide decisions about support requirements before mining development.

키워드

과제정보

Richard Kidega, Mary Nelima Ondiaka, Duncan Maina, Kiptanui Arap Too Jonah are grateful to The German Academic Exchange Service (DAAD) In-Country/In-Region 2018/2020 scholarship, to study at Taita Taveta University Voi Kenya as a Centre of Excellence for Mining, Environmental Engineering & Resource Management (CEMEREM) Project scholar.

참고문헌

  1. Adoko, A.C., Gokceoglu, C., Wu, L. and Zuo, Q.J. (2013), "Knowledge-based and data-driven fuzzy modeling for rockburst prediction", Int. J. Rock Mech. Min. Sci., 61, 86-95. https://doi.org/10.1016/j.ijrmms.2013.02.010.
  2. Ahmad, M., Hu, J.L., Hadzima-Nyarko, M., Ahmad, F., Tang, X.W., Rahman, Z.U., Nawaz, A. and Abrar, M. (2021), "Rockburst hazard prediction in underground projects using two intelligent classification techniques: A comparative study", Symmetry, 13(4), 632. https://doi.org/10.3390/sym13040632.
  3. Akram, M.S., Mirza, K., Zeeshan, M., Ali, M. and Ahmed, L. (2018), "Geotechnical investigation and prediction of rock burst, squeezing with remediation design by numerical analyses along headrace tunnel in Swat Valley, Khyber Pakhtunkhwa, Pakistan", Open J. Geology, 8(10), 965-986. https://doi.org/10.4236/ojg.2018.810058.
  4. Albrecht, J. and Potvin, Y. (2005), "Identifying the factors that control rockburst damage to underground excavations. In Identifying the factors that control rockburst damage to underground excavations", Australian Centre for Geomechanics, 519-528. https://doi.org/10.36487/acg_repo/574_56.
  5. Brady, B.H.G. and Brown, E.T. (2007), "Rock mechanics and mining engineering", Rock Mechanics for Underground Mining, Springer, Dordrecht.
  6. Bruning, T., Karakus, M., Akdag, S., Nguyen, G.D. and Goodchild, D. (2018), "Influence of deviatoric stress on rockburst occurrence: An experimental study", Int. J. Min. Sci. Technol., 28(5), 763-766. https://doi.org/10.1016/j.ijmst.2018.08.005.
  7. Chen, B., Gu, C., Bao, T., Wu, B. and Su, H. (2016), "Failure analysis method of concrete arch dam based on elastic strain energy criterion", Eng. Fail. Anal., 60, 363-373. https://doi.org/10.1016/j.engfailanal.2015.11.045
  8. Chen, Y., Zhang, J., Zhang, J., Xu, B., Zhang, L. and Li, W. (2021), "Rockburst precursors and the dynamic failure mechanism of the deep tunnel: A review", Energi., 14(22), 7548. https://doi.org/10.3390/en14227548.
  9. Dobbin, K.K. and Simon, R.M. (2011), "Optimally splitting cases for training and testing high dimensional classifiers", BMC Med. Genom., 4(1), 1-8. https://doi.org/10.20944/preprints202007.0753.v1.
  10. Dong, lj., Li, X.B. and Peng, K. (2013) "Prediction of rockburst classification using random forest", Trans. Nonferrous Met. Soc. China, 23(2), 472-477. https://doi.org/10.1016/s1003-6326(13)62487-5.
  11. Du, F., Wang, K., Guo, Y., Wang, G., Wang, L. and Wang, Y. (2020), "The mechanism of rockburst-outburst coupling disaster considering the coal-rock combination: An experiment study", Geomech. Eng., 22(3), 255-264. https://doi.org/10.12989/gae.2020.22.3.255.
  12. Fan, J., Chen, J., Jiang, D., Wu, J., Shu, C. and Liu, W. (2019), "A stress model reflecting the effect of the friction angle on rockbursts in coal mines", Geomech. Eng., 18(1), 21-27. https://doi.org/10.12989/gae.2019.18.1.021.
  13. Friedman, J.H. (2001), "Greedy function approximation: a gradient boosting machine", Ann. Statist., 11(6), 332. https://doi.org/10.1214/aos/1013203451.
  14. Friedman, J.H. (2002). "Stochastic gradient boosting", Comput. Sstat. Data Anal., 38(4), 367-378. https://doi.org/10.1016/S0167-9473(01)00065-2
  15. Ge, Q. and Feng, X. (2008), "Classification and prediction of rockburst using AdaBoost combination learning method", Rock Soil Mech., Wuhan, 29(4), 943.
  16. Gollapudi, S. (2016), Practical Machine Learning, Packt Publishing Ltd.
  17. Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning Data Mining, Inference, and Prediction, Springer.
  18. He, M., e Sousa, L.R., Miranda, T. and Zhu, G. (2015), "Rockburst laboratory tests database-application of data mining techniques", Eng. Geol., 185, 116-130. https://doi.org/10.1016/j.enggeo.2014.12.008.
  19. He, M., Xia, H., Jia, X., Gong, W., Zhao, F. and Liang, K. (2012), "Studies on classification, criteria and control of rockbursts", J. Rock Mech. Geotech. Eng., 4(2), 97-114. https://doi.org/10.3724/sp.j.1235.2012.00097.
  20. Hoek, E. and Brown, E.T. (2019), "The Hoek-Brown failure criterion and GSI-2018 edition", J. Rock Mech. Geotech. Eng., 11(3), 445-463. https://doi.org/10.1016/j.jrmge.2018.08.001.
  21. Jia, C., Wang, H., Sun, X., Yu, X. and Luan, H. (2020), "Study on rockburst prevention technology of isolated working face with thick-hard roof", Geomech. Eng., 20(5), 447-459. https://doi.org/10.12989/gae.2020.20.5.447.
  22. Kabwe, E. and Wang, Y. (2015), "Review on rockburst theory and types of rock support in rockburst prone mines", Open J. Saf. Sci. Technol., 5(04), 104. https://doi.org/10.4236/ojsst.2015.54013.
  23. Keneti, A. and Sainsbury, B.A. (2018), "Review of published rockburst events and their contributing factors", Eng. Geology, 246, 361-373. https://doi.org/10.1016/j.enggeo.2018.10.005.
  24. Keprate, A. and Ratnayake, R.C. (2017), "Using gradient boosting regressor to predict stress intensity factor of a crack propagating in small bore piping", 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), December. https://doi.org/10.1109/ieem.2017.8290109.
  25. Khoda Bakhshi, A. and Ahmed, M.M. (2021), "Utilizing blackbox visualization tools to interpret non-parametric real-time risk assessment models", Transportmetrica A: Trans. Sci., 17(4), 739-765. https://doi.org/10.1080/23249935.2020.1810169.
  26. Kuhn, M. and Johnson, K. (2013), "Book review: Max Kuhn and Kjell Johnson, Applied predictive modeling, New York, Springer", Biometric., 74(1), 383-383. https://doi.org/10.1111/biom.12855.
  27. Larsson, K. (2004), Seismicity in Mines, Birkhauser.
  28. Li, N. (2017), "Predicting underground tunnel hazards using machine learning techniques", Doctoral Dissertation, Caminos. https://doi.org/10.20868/upm.thesis.48301.
  29. Li, T., Ma, C., Zhu, M., Meng, L. and Chen, G. (2017), "Geomechanical types and mechanical analyses of rockbursts", Eng. Geology, 222, 72-83. https://doi.org/10.1016/j.enggeo.2017.03.011.
  30. Li, Z., Li, B., Han, X. and Song, W. (2014), "Tunnel rockburst proneness study based on AHP-FUZZY method and field test", Elec. J. Geotech. Eng., 19, 117-128
  31. Liang, W., Sari, A., Zhao, G., McKinnon, S.D. and Wu, H. (2020). Short-term rockburst risk prediction using ensemble learning methods", Nat. Hazard., 104(2), 1923-1946. https://doi.org/10.1007/s11069-020-04255-7.
  32. Liu, X., Xia, Y., Lin, M. and Benzerzour, M. (2019), "Experimental study of rockburst under true-triaxial gradient loading conditions", Geomech. Eng., 18(5), 481-492. https://doi.org/10.12989/gae.2019.18.5.481.
  33. Lu, J., Yin, G., Gao, H., Li, X., Zhang, D., Deng, B., Wu, M. and Li, M. (2020), "True triaxial experimental study of disturbed compound dynamic disaster in deep underground coal mine", Rock Mech. Rock Eng., 53(5), 2347-2364. https://doi.org/10.1007/s00603-019-02041-x.
  34. Lu, Z., Ju, W., Gao, F., Feng, Y., Sun, Z., Wang, H. and Yi, K. (2019), "A new bursting liability evaluation index for coal-the effective elastic strain energy release rate", Energi., 12(19), 3734. https://doi.org/10.3390/en12193734.
  35. Ma, C.S., Chen, W.Z., Tan, X.J., Tian, H.M., Yang, J.P. and Yu, J.X. (2018), "Novel rockburst criterion based on the TBM tunnel construction of the Neelum-Jhelum (NJ) hydroelectric project in Pakistan", Tunnel. Underg. Space Technol., 81, 391-402. https://doi.org/10.1016/j.tust.2018.06.032.
  36. Ma, T.H., Tang, C.A., Tang, L.X., Zhang, W.D. and Wang, L. (2015), "Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station". Tunnel. Underg. Space Technol., 49, 345-368. https://doi.org/10.1016/j.tust.2015.04.016.
  37. Ma, Y., Liu, C., Wu, F. and Li, X. (2018), "Rockburst characteristics and mechanisms during steeply inclined thin veins mining: a case study in Zhazixi Antimony mine, China", Shock Vib., 2018. Article ID 3786047. https://doi.org/10.1155/2018/3786047.
  38. Miao, C., Sun, X., Zhang, Y., Wang, J., Zhang, J., Song, P. and Li, G. (2020), "Experimental study on the strain rockburst of calcareous sandstone containing joint surface", Arab. J. Geosci., 13(19), 1-10. https://doi.org/10.1007/s12517-020-06035-w.
  39. Monjezi, M., Ghafurikalajahi, M. and Bahrami, A. (2011), "Prediction of blast-induced ground vibration using artificial neural networks", Tunnel. Underg. Space Technol., 26(1), 46-50. https://doi.org/10.1016/j.tust.2010.05.002.
  40. Naji, A.M., Rehman, H., Emad, M.Z. and Yoo, H. (2018), "Impact of shear zone on rockburst in the deep neelum-jehlum hydropower tunnel: A numerical modeling approach", Energi., 11(8), 1935. https://doi.org/10.3390/en11081935.
  41. Naji, A.M., Rehman, H., Emad, M.Z., Ahmad, S., Kim, J.J. and Yoo, H. (2019), "Static and dynamic influence of the shear zone on rockburst occurrence in the headrace tunnel of the Neelum Jhelum hydropower project, Pakistan", Energi., 12(11), 2124. https://doi.org/10.3390/en12112124.
  42. Naji, A.M., Rehman, H., Emad, M.Z., Ahmed, S., Kim, J.J. and Yoo, H. (2019), "Rockburst evaluation in complex geological environment in deep hydropower tunnels. In Tunnels and Underground Cities", Engineering and Innovation meet Archaeology, Architecture and Art, CRC Press.
  43. Natekin, A. and Knoll, A. (2013), "Gradient boosting machines, a tutorial", Front. Neurorobot., 7, 21. https://doi.org/10.3389/fnbot.2013.00021.
  44. Papadopoulos, D. and Benardos, A. (2021), "enhancing machine learning algorithms to assess rock burst phenomena", Geotech. Geolog. Eng., 39(8), 5787-5809. https://doi.org/10.1007/s10706-021-01867-z.
  45. Pohrt, R. and Li, Q. (2014), "Complete boundary element formulation for normal and tangential contact problems", Phys. Mesomech., 17(4), 334-340. https://doi.org/10.1134/s1029959914040109.
  46. Pu, Y. (2019), "Machine learning approaches for long-term rock burst prediction", Doctor of Philosophy, University of Alberta. https://doi.org/10.7939/r3-7dwn-5c22.
  47. Pu, Y., Apel, D.B. and Lingga, B. (2018), "Rockburst prediction in kimberlite using decision tree with incomplete data", J. Sustain. Min., 17(3), 158-165. https://doi.org/10.1016/j.jsm.2018.07.004.
  48. Pu, Y., Apel, D.B., Liu, V. and Mitri, H. (2019), "Machine learning methods for rockburst prediction-state-of-the-art review", Int. J. Min. Sci. Technol., 29(4), 565-570. https://doi.org/10.1016/j.ijmst.2019.06.009.
  49. Qi, C., Chen, Q., Fourie, A. and Zhang, Q. (2018), "An intelligent modelling framework for mechanical properties of cemented paste backfill", Miner. Eng., 123, 16-27. https://doi.org/10.1016/j.mineng.2018.04.010.
  50. Qi, C., Fourie, A. and Chen, Q. (2018), "Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill", Constr. Build. Mater., 159, 473-478. https://doi.org/10.1016/j.conbuildmat.2017.11.006.
  51. Qi, C., Fourie, A., Chen, Q. and Zhang, Q. (2018), "A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill", J. Clean. Prod., 183, 566-578. https://doi.org/10.1016/j.jclepro.2018.02.154.
  52. Qi, C., Tang, X., Dong, X., Chen, Q., Fourie, A. and Liu, E. (2019), "Towards intelligent mining for backfill: A genetic programming-based method for strength forecasting of cemented paste backfill", Miner. Eng., 133, 69-79. https://doi.org/10.1016/j.mineng.2019.01.004.
  53. Shirani Faradonbeh, R. and Taheri, A. (2019), "Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques", Eng. Comput., 35(2), 659-675. https://doi.org/10.1007/s00366-018-0624-4.
  54. Su, G., Zhang, Y. and Chen, G. (2010), "Identify rockburst grades for Jinping II hydropower station using Gaussian process for binary classification", 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, 2, 364-367. https://doi.org/10.1109/cmce.2010.5609934.
  55. Sun, J.S., Zhu, Q.H. and Lu, W.B. (2007), "Numerical simulation of rock burst in circular tunnels under unloading conditions", J. China Univ. Min. Technol., 17(4), 552-556. https://doi.org/10.1016/s1006-1266(07)60144-8.
  56. Sun, X., Xu, H., Zheng, L., He, M. and Gong, W. (2016), "An experimental investigation on acoustic emission characteristics of sandstone rockburst with different moisture contents", Sci. China Technol. Sci., 59(10), 1549-1558. https://doi.org/10.1007/s11431-016-0181-8.
  57. Szwedzicki, T. (2018), Rock Mass Response to Mining Activities: Inferring Large-scale Rock Mass Failure, CRC Press. https://doi.org/10.1201/9781315112336.
  58. Ullah, B., Kamran, M. and Rui, Y. (2022), "Predictive modeling of short-term rockburst for the stability of subsurface structures using machine learning approaches: T-SNE, K-Means clustering and XGBoost", Math., 10(3), 449. https://doi.org/10.3390/math10030449.
  59. Wang, C., Chuai, X., Shi, F., Gao, A. and Bao, T. (2018), "Experimental investigation of predicting rockburst using Bayesian model", Geomech. Eng., 15(6), 1153-1160. https://doi.org/10.12989/gae.2018.15.6.1153.
  60. Wang, C., Wu, A., Lu, H., Bao, T. and Liu, X. (2015), "Predicting rockburst tendency based on fuzzy matter-element model", Int. J. Rock Mech. Min. Sci., 75, 224-232. https://doi.org/10.1016/j.ijrmms.2015.02.004.
  61. Wang, J.A. and Park, H.D. (2001), "Comprehensive prediction of rockburst based on analysis of strain energy in rocks", Tunnel. Underg. Space Technol., 16(1), 49-57. https://doi.org/10.1016/s0886-7798(01)00030-x.
  62. Wang, J.L., Chen, J.P., Yang, J. and Que, J.S. (2009), "Method of distance discriminant analysis for determination of classification of rockburst", Rock Soil Mech., 30(7), 2203-2208. https://doi.org/10.3969/j.issn.1000-7598.2009.07.058
  63. Wang, M., Zhou, J.W., Shi, A.C., Han, J.Q. and Li, H.B. (2020), "Key factors affecting the deformation and failure of surrounding rock masses in large-scale underground powerhouses", Adv. Civil Eng., 2020, Article ID 8843466. https://doi.org/10.1155/2020/8843466.
  64. Wang, Y.H., Chen, L.W. and Shen, F. (2008), "Numerical modeling of energy release in rockburst", Rock Soil Mech.- Wuhan, 29(3), 790.
  65. Weng, L., Huang, L., Taheri, A. and Li, X. (2017), "Rockburst characteristics and numerical simulation based on a strain energy density index: A case study of a roadway in Linglong gold mine, China", Tunnel. Underg. Space Technol., 69, 223-232. https://doi.org/10.1016/j.tust.2017.05.011.
  66. Zeng, Y., Chen, J., Li, D. and Li, X. (2020) "Study on rock burst behavior and tendency identification of surrounding rocks in hard and brittle formations of deep and ultra-deep wells", IOP Conf. Ser.: Earth Environ. Sci., 570(3), 032056. https://doi.org/10.1088/1755-1315/570/3/032056.
  67. Zhai, S., Su, G., Yin, S., Zhao, B. and Yan, L. (2020), "Rockburst characteristics of several hard brittle rocks: A true triaxial experimental study", J. Rock Mech. Geotech. Eng., 12(2), 279-296. https://doi.org/10.1016/j.jrmge.2019.07.013.
  68. Zhang, C., Feng, X.T., Zhou, H., Qiu, S. and Wu, W. (2013), "Rockmass damage development following two extremely intense rockbursts in deep tunnels at Jinping II hydropower station, southwestern China", Bul. Eng. Geol. Environ., 72(2), 237-247. https://doi.org/10.1007/s10064-013-0470-y.
  69. Zhang, P., Yi, C.P., Nordlund, E., Shirzadegan, S., Nyberg, U., Malmgren, L. and Nordqvist, A. (2013), "Numerical back-analysis of simulated rockburst field tests by using coupled numerical technique", Ground Support 2013: Proceedings of the Seventh International Symposium on Ground Support in Mining and Underground Construction, May.
  70. Zhao, Z.N., Feng, X.T., Chen, B.R., Feng, G.L. and Chen, T.Y (2013), "Study of relativity between rockburst and microseismic activity zone in deep tunnel", Rock Soil Mech., 34(2), 491-497.
  71. Zhou, J., Guo, H., Koopialipoor, M., Jahed Armaghani, D. and Tahir, M.M. (2021), "Investigating the effective parameters on the risk levels of rockburst phenomena by developing a hybrid heuristic algorithm". Eng. Comput., 37(3), 1679-1694. https://doi.org/10.1007/s00366-019-00908-9.
  72. Zhou, J., Li, E., Yang, S., Wang, M., Shi, X., Yao, S. and Mitri, H.S. (2019), "Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories", Saf. Sci., 118, 505-518. https://doi.org/10.1016/j.ssci.2019.05.046.
  73. Zhou, J., Li, X. and Mitri, H.S. (2016), "Classification of rockburst in underground projects: Comparison of ten supervised learning methods", J. Comput. Civil Eng., 30(5), 04016003. https://doi.org/10.1061/(asce)cp.1943-5487.0000553.
  74. Zhou, J., Li, X. and Mitri, H.S. (2018), "Evaluation method of rockburst: State-of-the-art literature review", Tunnel. Underg. Space Technol., 81, 632-659. https://doi.org/10.1016/j.tust.2018.08.029.
  75. Zhou, J., Li, X. and Shi, X. (2012), "Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines", Saf. Sci., 50(4), 629-644. https://doi.org/10.1016/j.ssci.2011.08.065.
  76. Zhou, J., Shi, X. and Li, X. (2016), "Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining", J. Vib. Control, 22(19), 3986-3997. https://doi.org/10.1177/1077546314568172.
  77. Zhu, Y.H., Liu, X.R. and Zhou, J.P. (2008), "Rockburst prediction analysis based on v-SVR algorithm", J. China Coal Soc., 33(3), 277-281. https://doi.org/10.3321/j.issn:0253-9993.2008.03.009