DOI QR코드

DOI QR Code

The Anti-depressive Effect of Rehmanniae Radix Preparata via Anti-inflammatory Activity

숙지황 추출물의 항염증 작용을 통한 항우울 효과

  • Kim, Eung Sun (Dept. of Third Medicine, Professional Graduate School of Korean Medicine, Wonkwang University) ;
  • Chong, Myongsoo (Dept. of Preventive Medicine, College of Korean Medicine & Research Center of Traditional Korean Medicine, Wonkwang University)
  • 김응선 (원광대학교 한의학전문대학원 제3의학과) ;
  • 정명수 (원광대학교 한의과대학 예방의학교실 & 원광대학교 전통의학연구소)
  • Received : 2022.02.11
  • Accepted : 2022.02.22
  • Published : 2022.03.01

Abstract

Objectives: Rehmanniae Radix Preparata (RRP) has been used as a traditional remedy to treat gynecology and endocrine diseases. Recently, studies on antioxidant and anti-inflammatory effects of RRP have been reported, so it was judged that RRP extracts would have an anti-depressive effect. Methods: We investigated the anti-neuroinflammatory and anti-depressive effect of RRP on lipopolysaccharide (LPS)-induced depression and LPS-stimulated BV2 microglia. RRP inhibited the LPS-stimulated excessive release of nitrite in the BV2 cells. RRP also significantly inhibited the inflammatory cytokines such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 in LPS-stimulated BV2 microglial cells. Results: RRP significantly suppressed the LPS-induced mitogen-activated protein kinase (MAPKs) and nuclear factor (NF)-𝜅B activation. In addition, administration of RRP not only inhibited the immobility time in the forced swimming test (FST) but also increased the total travel distance in the open field test (OFT). Also, RRP inhibited the elevation of TNF-alpha, IL-1beta, and IL-6 in brain of LPS-injected mice. Conclusions: Considering the overall results, our study showed that RRP exhibited the anti-neuroinflammatory and anti-depressive activities via deactivation of MAPKs and NF-𝜅B.

Keywords

References

  1. WHO. Pharmacological treatment of mental disorders in primary health care (Geneva: World Health Organization) 2009.
  2. Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., & Merikangas, K. R. (2003). The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA, 289, 3095-3105. https://doi.org/10.1001/jama.289.23.3095
  3. Greenberg, P. E., Kessler, R. C., Birnbaum, H. G., Leong, S. A., Lowe, S. W., & Berglund, P. A. (2003). The economic burden of depression in the United States: how did it change between 1990 and 2000? J Clin Psychiatry, 64, 1465-1475. https://doi.org/10.4088/JCP.v64n1211
  4. Hidaka, B. H. (2012). Depression as a disease of modernity: explanations for increasing prevalence. J Affect Disord, 140, 205-214. https://doi.org/10.1016/j.jad.2011.12.036
  5. Tiemeier, H. (2003). Biological risk factors for late life depression. Eur J Epidemiol, 18, 745-750. https://doi.org/10.1023/A:1025388203548
  6. Torres, G. E., Gainetdinov, R. R., & Caron, M. G. (2003). Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci, 4, 13-25. https://doi.org/10.1038/nrn1008
  7. Baldessarini, R. J. (1975). The basis for amine hypotheses in affective disorder, A critical evaluation. Arch Gen Psychiatry, 32(9), 1087-1093. https://doi.org/10.1001/archpsyc.1975.01760270019001
  8. Sapolsky, R., Rivier, C., Yamamoto, G., Plotsky, P., & Vale, W. (1987). Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science, 238(4826), 522-524. https://doi.org/10.1126/science.2821621
  9. Lee, M. S. (2000). Antidepressants and related drug interactions. Koeran J Biol Psychiatry. 7(1), 21-33.
  10. Sarko, J. (2000). Antidepressants, old and new. A review of their adverse effects and toxicity in overdose. Emerg Med Clin North Am, 18, 637-654. https://doi.org/10.1016/s0733-8627(05)70151-6
  11. Maes, M. (1995). Evidence for an immune response in major depression: a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatry, 19(1), 11-38. https://doi.org/10.1016/0278-5846(94)00101-M
  12. Song, H. R., Woo, Y. S., & Bahk, W. M. (2013). Depression as an inflammatory disease. Korean J Psychopharmacol, 24(1), 5-10.
  13. Oh, H. M., Kim, S. W., Oh, Y. T., Son, C. G., & Lee, J. S. (2017). A comparative study on physiopathology of depression by Korean medicine and conventional medicine. Journal of Haehwa Medicine, 26(1), 11-18.
  14. Kim, E.S. (2011). A study on the concept of Ul(鬱) in medical history- Focused on the theory submitted by Zhang-Zihe(張子和). J Oriental Medical Classics, 24(1), 73-84.
  15. Mao, Q. Q., Ip, S. P., Xian, Y. F., Hu, Z., & Che, C. T. (2012). Anti-depressant-like effect of peony: a minireview. Pharmaceutical Biology, 50, 72-77. https://doi.org/10.3109/13880209.2011.602696
  16. Yoon, J. P. (2011). Evaluation of the remedy for neuronal diseases from Rhemannia glutinosa Liboschitz and elucidation of their underlying mechanisms. MS Thesis. Daegu Haany University, Daegu, Korea.
  17. Kim, J. K. & Cho, B. K. (1995). Oriental traditional medicine primaries book. Seoul: Younglim.
  18. Liu, Z. Y. (1984). Comparison of monosaccharide contents between the raw and prepared roots of Rehmannia. Zhong Yao Tong Bao, 9, 17-18.
  19. Ni, M., Bian, B., & Wang, H. (1992). Constituents of the dry roots of Rehmannia glutinosa Libosch. Zhongguo Zhong Yao Za Zhi, 17, 297-298.
  20. Min, A. Y., Son, A.Y., Kim, H. J., Shin, S. K., & Kim, M. R. (2015). Quality characteristics and antioxidant activities of noodles added with Rehmanniae Radix Preparata powder. J Korean Soc Food Sci Nutr, 44(3), 386-392. https://doi.org/10.3746/JKFN.2015.44.3.386
  21. Kong, F., Lee, B. H., & Wei, K. (2019). 5-Hydroxymethylfurfural mitigates lipopolysaccharide-stimulated inflammation via suppression of MAPK, NF-κB and mTOR activation in RAW 264.7 cells. Molecules, 24(2), 275. https://doi.org/10.3390/molecules24020275
  22. Custodio CS, Mello BSF, Cordeiro RC, de Araujo FYR, Chaves JH, Vasconcelos SMM, et al. Time course of the effects of lipopolysaccharide on prepulse inhibition and brain nitrite content in mice. Eur J Pharmacol. 2013; 713: 31-38. https://doi.org/10.1016/j.ejphar.2013.04.040
  23. Detke, M. J., Rickels, M., & Lucki, I. (1995). Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology, 121(1), 66-72. https://doi.org/10.1007/BF02245592
  24. Hsiao, Y. T., Yi, P. L., Li, C. L., & Chang, F. C. (2012). Effect of cannabidiol on sleep disruption induced by the repeated combination tests consisting of open field and elevated plus-maze in rats. Neuropharmacology, 62(1), 373-384. https://doi.org/10.1016/j.neuropharm.2011.08.013
  25. Mao, Q. Q., Ip, S. P., Ko, K. M., Tsai, S. H., & Che, C. T. (2009). Peony glycosides produce antidepressant-like action in mice exposed to chronic unpredictable mild stress: Effects on hypothalamic- pituitary adrenal function and brain-derived neurotrophic factor. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33(7), 1211-1216. https://doi.org/10.1016/j.pnpbp.2009.07.002
  26. Stetler, C. & Miller, G. E. (2011). Depression and hypothalamic-pituitary adrenal activation: a quantitative summary of four decades of research. Psychosom Med, 73, 114-126. https://doi.org/10.1097/psy.0b013e31820ad12b
  27. Schiepers, O. J., Wichers, M. C., & Maes, M. (2005). Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry, 29, 201-217. https://doi.org/10.1016/j.pnpbp.2004.11.003
  28. Maletic, V., Robinson, M., Oakes, T., Iyengar, S., Ball, S. G., & Russell, J. (2007). Neurobiology of depression: an integrated view of key findings. Int J Clin Pract, 61, 2030-2040. https://doi.org/10.1111/j.1742-1241.2007.01602.x
  29. Dantzer, R., O'Connor, J. C., Lawson, M. A., & Kelley, K. W. (2011). Inflammation-associated depression: From serotonin to kynurenine. Psychoneuroendocrinology, 36(3), 426-436. https://doi.org/10.1016/j.psyneuen.2010.09.012
  30. Lee, J. E., Kwon, Y. J., & Cho, S. H. (2011). A review of clinical studies with herbal medicine for depression - based on randomized controlled clinical trial. J of Oriental Neuropsychiatry, 22(4), 31-40. https://doi.org/10.7231/JON.2011.22.4.031
  31. Son, S. H. & Son, P. I. (1985). Shinnongboncho-Gyeong. Taipei: Oju Publisher.
  32. San, S. (1994). Bonchdogyong. Hefei: Anhui Science and Technology Publisher.
  33. Park, S.J., Park, H.S., & Yoo, S. O. (1998). Effects of supplemention of Rehmannia Radix on performance and physiological status in broiler chicks. Korean J Poult Sci, 25, 195-202.
  34. Tomoda, M., Miyamoto, H., & Shimizu, N. (1994). Structural features and anti-complementary activity of rehmannan SA, a polysaccharide from the root of Rehmannia glutinosa. Chem Pharm Bull, 42, 1666-1668. https://doi.org/10.1248/cpb.42.1666
  35. You, B. R., Kim, H. R., Kim, H. J., Lee, J. Y., Lee, S. Y., Song, M. R., et al. (2011). Catalpol content and antioxidant activities in various cultivars of Rehmannia glutinosa. J Korean Soc Food Sci Nutr, 40, 481-485. https://doi.org/10.3746/JKFN.2011.40.4.481
  36. Oh, H. L., You, B. R., Kim, H. J., Lee, J. Y., Kim, N. Y., Song, J.E., et al. (2011). Quality characteristics and antioxidant activities of Rhmanniae Radix paste. J Korean Soc Food Sci Nutr, 40, 1518-1524. https://doi.org/10.3746/JKFN.2011.40.11.1518
  37. Cho, S. I. (2005). Effects of the Rehmanniae Radix Preparat on Ovariectomized Rats. Kor J Herbol, 20(4), 61-67.
  38. Thao, D., Roger, M., Susan, V., & Carl W. (2008). Lippincott's Illustrated Reviews: Immunology. Seoul: Shinilbooks.
  39. Abbas, A. K., Lichtman, A.H., & Pillai, S. (2008). Cellular and Molecular Immunology, 6/E. Seoul: Epublic.