DOI QR코드

DOI QR Code

온실 환경요인의 공간적 및 수직적 특성 분석과 온실 종류에 따른 이산화탄소 농도 비교

Analysis of Spatial and Vertical Variability of Environmental Parameters in a Greenhouse and Comparison of Carbon Dioxide Concentration in Two Different Types of Greenhouses

  • 정영애 (한국방송통신대학교 농업생명과학과) ;
  • 장동철 (강원대학교 원예학과) ;
  • 권진경 (국립농업과학원 에너지환경공학과) ;
  • 김대현 (강원대학교 바이오시스템공학과) ;
  • 최은영 (한국방송통신대학교 농업생명과학과)
  • Jeong, Young Ae (Department of Agriculture and Life Science, Korea National Open University) ;
  • Jang, Dong Cheol (Department of Horticulture, College of Agriculture and Life Science, Kangwon National University) ;
  • Kwon, Jin Kyung (Department of Agricultural Engineering, Energy and Environmental Engineering Division, National Institute of Agricultural Sciences) ;
  • Kim, Dae Hyun (Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University) ;
  • Choi, Eun Young (Department of Agricultural Science, Korea National Open University)
  • 투고 : 2022.06.29
  • 심사 : 2022.07.26
  • 발행 : 2022.07.31

초록

본 연구는 환경측정용 센서 위치에 따른 온실 환경의 공간·수직적 특성을 조사하고 온실 종류에 따른 온도, 광도 및 CO2 농도 간의 상관관계를 구명하고자 수행하였다. 벤로형 온실의 공간적인 5지점을 선정한 후 각 지점에서 대표적 작물의 수직적 높이 4지점과 지면부, 지붕 공간에 온도, 상대습도, CO2, 엽온 및 광센서를 설치하였다. 벤로형 온실과 반밀폐형 온실에서 온도, 광도 및 CO2 농도 변화의 관계성을 Curve Expert Professional 프로그램을 이용하여 비교하였다. 벤로형 온실의 공간적 위치에 따른 편차는 CO2 농도가 다른 요인보다 큰 것으로 나타났다. CO2 농도는 평균 465-761µmol·mol-1 범위였고, 편차가 가장 큰 시간대는 오후 5시였으며, 최고 농도는 액화 탄산가스 공급장치의 메인 배관(50Ø)과 가까운 위치인 중앙 후부(Middle End, 4ME)에서 646µmol·mol-1, 최저농도는 좌측 중앙(Left Middle, 5LM)에서 436µmol·mol-1이었다. 수직적 위치에 따른 편차는 온도와 상대습도가 다른 요인보다 큰 것으로 나타났다. 평균 기온의 편차가 가장 큰 시간대는 오후 2시대이며, 최고 기온은 작물 위 공기층(Upper Air, UA)에서 26.51℃, 최저 기온은 작물의 하단부(Lower Canopy, LC)에서 25.62℃였다. 평균 상대습도의 편차가 가장 큰 시간대는 오후 1시대로 나타났으며, 최고 습도는 LC에서 76.90%, 최저 습도는 UA에서 71.74%이다. 각 시간대에 평균 CO2 농도가 가장 높은 수직적 위치는 지붕 공간 공기층(Roof Air, RF)과 시설 내 지면(Ground, GD)이었다. 온실 내 온도, 광도 및 CO2 농도의 관계성은 반밀폐형 온실의 경우 결정계수(r2)가 0.07, 벤로형 온실은 0.66이었다. 결과를 종합하여 볼 때, 온실 내 CO2 농도는 공간적 분포, 온도와 습도는 작물의 수직적 분포 차이를 측정하여 분석할 필요가 있고 환기율이 낮은 반밀폐형 온실의 경우 목표 CO2 시비 농도가 일반 온실과 다르게 설정해야 할 것으로 판단된다.

This study was aimed to investigate spatial and vertical characteristics of greenhouse environments according to the location of the environmental sensors, and to investigate the correlations between temperature, light intensity, and carbon dioxide (CO2) concentration according to the type of greenhouse. Temperature, relative humidity (RH), CO2, and light sensors were installed in the four-different vertical positions of the whole canopy as well as ground and roof space at the five spatial locations of the Venlo greenhouse. Also, correlations between temperature, light intensity, and CO2 concentration in Venlo and semi-closed greenhouses were analyzed using the Curve Expert Professional program. The deviations among the spatial locations were larger in the CO2 concentration than other environmental factors in the Venlo greenhouse. The average CO2 concentration ranged from 465 to 761 µmol·mol-1 with the highest value (646 µmol·mol-1) at the Middle End (4ME) close to the main pipe (50Ø) of the liquefied CO2 gas supply and lowest (436 µmol·mol-1) at the Left Middle (5LM). The deviation among the vertical positions was greater in temperature and relative humidity than other environments. The time zone with the largest deviation in average temperature was 2 p.m. with the highest temperature (26.51℃) at the Upper Air (UA) and the lowest temperature (25.62℃) at the Lower Canopy (LC). The time zone with the largest deviation in average RH was 1 p.m. with the highest RH (76.90%) at the LC and the lowest RH (71.74%) at the UA. The highest average CO2 concentration at each hour was Roof Air (RF) and Ground (GD). The coefficient of correlations between temperature, light intensity, and CO2 concentration were 0.07 for semi-closed greenhouse and 0.66 for Venlo greenhouse. All the results indicate that while the CO2 concentration in the greenhouse needs to be analyzed in the spatial locations, temperature and humidity needs to be analyzed in the vertical positions of canopy. The target CO2 fertilization concentration for the semi-closed greenhouse with low ventilation rate should be different from that of general greenhouses.

키워드

과제정보

본 연구는 재단법인 스마트팜연구개발사업단(농림식품기술기획평가원 과제번호:421040-04)의 지원을 받아 수행되었음.

참고문헌

  1. Bowes G. 1991, Growth at elevated CO2 : photosynthetic responses mediated through Rubisco. Plant Cell Environ 14:795-806. doi:10.1111/j.1365-3040.1991.tb01443.x
  2. Cho A.R., S.H. Choi, and Y.J. Kim 2020, Flowering and photosynthetic responses of Phalaenopsis under elevated CO2 and nutrient supply. Hortic Sci Technol 38:595-607. (in Korean) doi:10.7235/HORT.20200055
  3. Dannehl D., M. Josuttis, S. Huyskens-Keil, C. Ulrichs, and U. Smidt 2014, Comparison of different greenhouse systems and their impact on plant responses of tomatoes. Gesunde Pflanz 66:111-119. doi:10.1007/s10343-014-0322-0
  4. Esmeijer M.H. 1999, CO2 in greenhouse horticulture. Applied Plant Research, Aalsmeer/Naaldwijk, the Netherlands, pp 74-75.
  5. Geelen P.A.M., J.O. Voogt, and P.A. van Weel 2018, Plant empowerment: The basic principles. plantempowerment academy, the Netherlands.
  6. Hong S.W., and I.B. Lee 2014, Predictive model of microenvironment in a naturally ventilated greenhouse for a modelbased control approach. Protected Hort Plant Fac 23:181-191. (in Korean) doi:10.12791/ksbec.2014.23.3.181
  7. Jeong C.S., I.S. Kim, K.C. Yoo, S.S. Kim, D.H. Cho, and Y.R. Yeoung 1996, Effects of CO2 enrichment on the net photosynthesis, yield, content of sugar and organic acid in strawberry fruits. J Korean Soc Hortic Sci 37:736-740. (in Korean)
  8. Keutgen N., K. Chen, and F. Lenz 1997, Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J Plant Physiol 150:395-400. doi:10.1016/S0176-1617(97)80088-0
  9. Koch G.W., and H.A. Mooney 1996, Response of terrestrial ecosystems to elevated CO2: A synthesis and summary. In GH Koch, HA Mooney, eds, Carbon Dioxide and Terrestrial Ecosystems. Academic Press, Inc., San Diego, CA, USA, pp 415-429.
  10. Lee J.K., D.H. Kang, S.H. Oh, and D.H. Lee 2020, Strategies about optimal measurement matrix of environment factors inside plastic greenhouse. Protected Hort Plant Fac 29:161-170. (in Korean) doi:10.12791/ksbec.2020.29.2.161
  11. Lee T.S., G.C. Kang, H.K. Kim, J.P. Moon, S.S. Oh, and J.K. Kwon 2017, Analysis of air temperature and humidity distributions and energy consumptions according to use of air circulation fans in a single-span greenhouse. Protected Hort Plant Fac 26:276-282. (in Korean) doi:10.12791/ksbec.2017.26.4.276
  12. Lee Y.B., and B.Y. Lee 1994, Effect of long-term CO2 enrichment on leaf temperature, diffusion resistance, and photosynthetic rate in tomato plant. J Korean Soc Hortic Sci 35:421-428. (in Korean)
  13. Marcelis L.F.M., F. Buwalda, J.A. Dieleman, T.A. Dueck, A. Elings, A. de Gelder, S. Hemming, F.L.K. Kempkes, T. Li, and F. van Noort 2014, Innovations in crop production: A matter of physiology and technology. Acta Hortic 1037:39-45. doi:10.17660/ActaHortic.2014.1037.1
  14. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2020a, Greenhouse status of vegetables grown in facilities 2015-2020. Available via https://kosis.kr/statHtml/statHtml.do?orgId=114&tblId=DT_114018_009&conn_path=I2
  15. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2020b, Greenhouse status and production performance of vegetables grown in facility 2017-2020. Available via https://kosis.kr/statHtml/statHtml.do?orgId=114&tblId=DT_114018_011&conn_path=I2)
  16. Ministry of Agriculture, Food and Rural Affairs (MAFRA) 2021, Agricultural area survey. Available via https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0017&conn_path=I2
  17. Morita R., K. Inoue, K.I. Ikeda, T. Hatanaka, M. Misoo, and H. Fukayama 2016, Starch content in leaf sheath controlled by CO2-responsive CCT protein is a potential determinant of photosynthetic capacity in rice. Plant Cell Physiol 57:2334-2341. doi:10.1093/pcp/pcw142
  18. Mortensen L.M., and F. Ringsevjen 2020, Semi-closed greenhouse photosynthesis measurements: A future standard in intelligent climate control. Eur J Hortic Sci 85:219-225. doi:10.17660/eJHS.2020/85.4.2
  19. Qian T. 2017, Crop growth and development in closed and semi-closed greenhouses. PhD thesis, Wageningen Univ., Wageningen, The Netherlands. doi:10.18174/403466
  20. Rural Development Administration (RDA) 2021, Agricultural income survey 2013-2020. Available via https://kosis.kr/statHtml/statHtml.do?orgId=143&tblId=DT_143002_A000&conn_path=I2
  21. Stitt M. 1991, Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ 14:741-762. doi:10.1111/j.1365-3040.1991.tb01440.x
  22. Woo Y.H., H.J. Kim, T.Y. Kim, K.D. Kim, E.Y. Nam, I.H. Cho, K.H. Hong, and K.H. Lee 2005, Effect of high temperature adaptable improvement of spray type chrysanthemum (Dendranthema grandiflorum) of greenhouse according to carbon dioxide treatment at summer. J Bio-Env Con 14:100-104. (in Korean)