참고문헌
- Abd-Elaal, E.S., Araby, S., Mills, J.E., Youssf, O., Roychand, R., Ma, X., Zhuge, Y. and Gravina, R.J. (2019), "Novel approach to improve crumb rubber concrete strength using thermal treatment", Constr. Build. Mater., 229, 116901. https://doi.org/10.1016/j.conbuildmat.2019.116901
- Ashrafian, A., Gandomi, A.H., Rezaie-Balf, M. and Emadi, M. (2020), "An evolutionary approach to formulate the compressive strength of roller compacted concrete pavement", Measurement: J. Int. Measure. Confed., 152, 107309. https://doi.org/10.1016/j.measurement.2019.107309
- Bala, A., Sehgal, V.K. and Saini, B. (2014), Effect of Fly ash and Waste Rubber on Properties of Concrete Composite. Www.Crl.Issres.Net
- Balaha, M.M., Badawy, A.A.M. and Hashish, M. (2007), "Effect of using ground waste tire rubber as fine aggregate on the behaviour of concrete mixes", Indian J. Eng. Mater. Sci., pp. 427-435.
- Batayneh, M.K., Marie, I. and Asi, I. (2008), "Promoting the use of crumb rubber concrete in developing countries", Waste Manag., 28(11), 2171-2176. https://doi.org/10.1016/j.wasman.2007.09.035
- Behnood, A. and Daneshvar, D. (2020), "A machine learning study of the dynamic modulus of asphalt concretes: An application of M5P model tree algorithm", Constr. Build. Mater., 262, 120544. https://doi.org/10.1016/j.conbuildmat.2020.120544
- Behnood, A. and Golafshani, E.M. (2020), "Machine learning study of the mechanical properties of concretes containing waste foundry sand", Constr. Build. Mater., 243, 118152. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.118152
- Behnood, A., Behnood, V., Modiri Gharehveran, M. and Alyamac, K.E. (2017), "Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm", Constr. Build. Mater., 142, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.03.061
- Bompa, D.V., Elghazouli, A.Y., Xu, B., Stafford, P.J. and Ruiz-Teran, A.M. (2017), "Experimental assessment and constitutive modelling of rubberised concrete materials", Constr. Build. Mater., 137, 246-260. https://doi.org/10.1016/j.conbuildmat.2017.01.086
- Carroll, J.C. and Helminger, N. (2016), "Fresh and hardened properties of fiber-reinforced rubber concrete", J. Mater. Civil Eng., 28(7), 04016027. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001541
- Eldin, N.N. and Senouci, A.B. (1993), "Rubber-tire particles as concrete aggregate", J. Mater. Civil Eng., 5(4), 478-496. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478)
- Eldin, N.N. and Senouci, A.B. (1994), "Measurement and prediction of the strength of rubberized concrete", Cement Concrete Compos., 16(4), 287-298. https://doi.org/10.1016/0958-9465(94)90041-8
- Feng, W., Liu, F., Yang, F., Li, L. and Jing, L. (2018), "Experimental study on dynamic split tensile properties of rubber concrete", Constr. Build. Mater., 165, 675-687. https://doi.org/10.1016/j.conbuildmat.2018.01.073
- Feng, W., Liu, F., Yang, F., Li, L., Jing, L., Chen, B. and Yuan, B. (2019), "Experimental study on the effect of strain rates on the dynamic flexural properties of rubber concrete", Constr. Build. Mater., 224, 408-419. https://doi.org/10.1016/j.conbuildmat.2019.07.084
- Ferreira, C. (2001), "Gene expression programming: a new adaptive algorithm for solving problems", ArXiv Preprint Cs/0102027.
- Gesoglu, M. and Guneyisi, E. (2007), "Strength development and chloride penetration in rubberized concretes with and without silica fume", Mater. Struct./Materiaux et Constructions, 40(9), 953-964. https://doi.org/10.1617/s11527-007-9279-0
- Gesoglu, M., Guneyisi, E. and Ozturan, T. (2005), "Use of recycled tyre rubber as aggregates in silica fume concrete", Proceedings of the International Conference on Achieving Sustainability in Construction.
- Gesoglu, M., Guneyisi, E., Hansu, O., Ipek, S. and Asaad, D.S. (2015), "Influence of waste rubber utilization on the fracture and steel-concrete bond strength properties of concrete", Constr. Build. Mater., 101, 1113-1121. https://doi.org/10.1016/j.conbuildmat.2015.10.030
- Gholampour, A., Gandomi, A.H. and Ozbakkaloglu, T. (2017), "New formulations for mechanical properties of recycled aggregate concrete using gene expression programming", Constr. Build. Mater., 130, 122-145. https://doi.org/10.1016/j.conbuildmat.2016.10.114
- Golafshani, E.M. and Behnood, A. (2018), "Automatic regression methods for formulation of elastic modulus of recycled aggregate concrete", Appl. Soft Comput. J., 64, 377-400. https://doi.org/10.1016/j.asoc.2017.12.030
- Golafshani, E.M. and Behnood, A. (2019), "Estimating the optimal mix design of silica fume concrete using biogeography-based programming", Cement Concrete Compos., 96, 95-105. https://doi.org/10.1016/j.cemconcomp.2018.11.005
- Golafshani, E.M., Arashpour, M. and Kashani, A. (2021), "Green mix design of rubbercrete using machine learning-based ensemble model and constrained multi-objective optimization", J. Cleaner Product., 327, 129518. https://doi.org/10.1016/j.jclepro.2021.129518
- Golafshani, E.M., Arashpour, M. and Behnood, A. (2022), "Predicting the compressive strength of green concretes using Harris hawks optimization-based data-driven methods", Constr. Build. Mater., 318, 125944. https://doi.org/10.1016/j.conbuildmat.2021.125944
- Grdic, Z., Toplicic-Curcic, G., Ristic, N., Grdic, D. and Mitkovic, P. (2014), "Hydro-abrasive resistance and mechanical properties of rubberized concrete", J. Croatian Assoc. Civil Engr., 66(01.), 11-20. https://doi.org/10.14256/jce.910.2013
- Gregori, A., Castoro, C., Marano, G.C. and Greco, R. (2019), "Strength reduction factor of concrete with recycled rubber aggregates from tires", J. Mater. Civil Eng., 31(8), 04019146. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002783
- Grinys, A., Sivilevicius, H. and Dauksys, M. (2012), "Tyre rubber additive effect on concrete mixture strength", J. Civil Eng., 18(3), 393-401. Manage. https://doi.org/10.3846/13923730.2012.693536
- Guneyisi, E., Gesoglu, M. and Ozturan, T. (2004), "Properties of rubberized concretes containing silica fume", Cement Concrete Res., 34(12), 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005
- Gupta, T., Chaudhary, S. and Sharma, R.K. (2016), "Mechanical and durability properties of waste rubber fiber concrete with and without silica fume", J. Cleaner Product., 112, 702-711. https://doi.org/10.1016/j.jclepro.2015.07.081
- Gupta, T., Patel, K.A., Siddique, S., Sharma, R.K. and Chaudhary, S. (2019), "Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN", Measurement, 147, 106870. https://doi.org/10.1016/j.measurement.2019.106870
- Hadzima-Nyarko, M., Nyarko, E.K., Ademovic, N., Milicevic, I. and Sipos, T.K. (2019), "Modelling the influence of waste rubber on compressive strength of concrete by artificial neural networks", Materials, 12(4), 561. https://doi.org/10.3390/ma12040561
- Hossain, F.M.Z., Shahjalal, M., Islam, K., Tiznobaik, M. and Alam, M.S. (2019), "Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber", Constr. Build. Mater., 225, 983-996. https://doi.org/10.1016/j.conbuildmat.2019.07.245
- Iqbal, M.F., Liu, Q. feng, Azim, I., Zhu, X., Yang, J., Javed, M.F. and Rauf, M. (2020), "Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming", J. Hazard. Mater., 384, 121322. https://doi.org/10.1016/j.jhazmat.2019.121322
- Jalal, M., Arabali, P., Grasley, Z., Bullard, J.W. and Jalal, H. (2020a), "Behavior assessment, regression analysis and support vector machine (SVM) modeling of waste tire rubberized concrete", J. Cleaner Product., 273, 122960. https://doi.org/10.1016/j.jclepro.2020.122960
- Jalal, M., Grasley, Z., Gurganus, C. and Bullard, J.W. (2020b), "Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete", Constr. Build. Mater., 256, 119478. https://doi.org/10.1016/j.conbuildmat.2020.119478
- Kandiri, A., Golafshani, E.M. and Behnood, A. (2020), "Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm", Constr. Build. Mater., 248, 118676. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.118676
- Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manage., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015
- Khatib, Z.K. and Bayomy, F.M. (1999), "Rubberized Portland cement concrete", J. Mater. Civil Eng., 11(3), 206-213. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206)
- Li, H.L., Xu, Y., Chen, P.Y., Ge, J.J. and Wu, F. (2019), "Impact energy consumption of high-volume rubber concrete with silica fume", Adv. Civil Eng. https://doi.org/10.1155/2019/1728762
- Loh, W.Y. (2011), "Classification and regression trees", Wiley Interdiscipl. Rev.: Data Min. Knowl. Discov., 1(1), 14-23. https://doi.org/10.1002/widm.8
- Mendis, A.S.M., Al-Deen, S. and Ashraf, M. (2017), "Behaviour of similar strength crumbed rubber concrete (CRC) mixes with different mix proportions", Constr. Build. Mater., 134, 354-366. https://doi.org/10.1016/j.conbuildmat.2017.01.125
- Mohammadi, I., Khabbaz, H. and Vessalas, K. (2014), "In-depth assessment of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements", Constr. Build. Mater., 71, 456-471. https://doi.org/10.1016/j.conbuildmat.2014.08.085
- Mohammed, B.S. and Azmi, N.J. (2014), "Strength reduction factors for structural rubbercrete", Front. Struct. Civil Eng., 8(3), 270-281. https://doi.org/10.1007/s11709-014-0265-7
- Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Software, 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014
- Nazari, A. and Torgal, F.P. (2013), "Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP", Expert Syst. Applicat., 40(14), 5427-5438. https://doi.org/10.1016/j.eswa.2013.04.014
- Nekoei, M., Moghaddas, S.A., Golafshani, E.M. and Gandomi, A.H. (2021), "Introduction of ABCEP as an automatic programming method", Inform. Sci., 545, 575-594. https://doi.org/10.1016/j.ins.2020.09.020
- Nielsen, M.P. and Hoang, L.C. (2016), Limit Analysis and Concrete Plasticity, (3rd edition).
- Noaman, A.T., Abu Bakar, B.H., Akil, H.M. and Alani, A.H. (2017), "Fracture characteristics of plain and steel fibre reinforced rubberized concrete", Constr. Build. Mater., 152, 414-423. https://doi.org/10.1016/j.conbuildmat.2017.06.127
- Ozbay, E., Lachemi, M. and Sevim, U.K. (2011), "Compressive strength, abrasion resistance and energy absorption capacity of rubberized concretes with and without slag", Mater. Struct./Materiaux et Constructions, 44(7), 1297-1307. https://doi.org/10.1617/s11527-010-9701-x
- Quinlan, J.R. (1992), "Learning with continuous classes: Constructing Model Trees", Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Tasmania, Australia, November. https://doi.org/10.1.1.34.885
- Rashid, K., Yazdanbakhsh, A. and Rehman, M.U. (2019), "Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material", J. Cleaner Product., 224, 396-410. https://doi.org/10.1016/j.jclepro.2019.03.197
- Reda Taha, M.M., El-Dieb, A.S., Abd El-Wahab, M.A. and Abdel-Hameed, M.E. (2008), "Mechanical, fracture, and microstructural investigations of rubber concrete", J. Mater. Civil Eng., 20(10), 640-649. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640)
- Roychand, R., Gravina, R.J., Zhuge, Y., Ma, X., Youssf, O. and Mills, J.E. (2020), "A comprehensive review on the mechanical properties of waste tire rubber concrete", Constr. Build. Mater., 237, 117651. https://doi.org/10.1016/j.conbuildmat.2019.117651
- Shahmansouri, A.A., Akbarzadeh Bengar, H. and Ghanbari, S. (2020), "Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method", J. Build. Eng., 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326
- Siddika, A., Al Mamun, M.A., Alyousef, R., Amran, Y.M., Aslani, F. and Alabduljabbar, H. (2019), "Properties and utilizations of waste tire rubber in concrete: A review", Constr. Build. Mater., 224, 711-731. https://doi.org/10.1016/j.conbuildmat.2019.07.108
- Stallings, K.A., Durham, S.A. and Chorzepa, M.G. (2019), "Effect of cement content and recycled rubber particle size on the performance of rubber-modified concrete", Int. J. Sustain. Eng., 12(3), 189-200. https://doi.org/10.1080/19397038.2018.1505971
- Sukontasukkul, P. and Tiamlom, K. (2012), "Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size", Constr. Build. Mater., 29, 520-526. https://doi.org/10.1016/j.conbuildmat.2011.07.032
- Tahwia, A.M., Heniegal, A., Elgamal, M.S. and Tayeh, B.A. (2021), "The prediction of compressive strength and nondestructive tests of sustainable concrete by using artificial neural networks", Comput. Concrete, Int. J., 27(1), 21-28. https://doi.org/10.12989/cac.2021.27.1.021
- Thomas, B.S. and Gupta, R.C. (2015), "Long term behaviour of cement concrete containing discarded tire rubber", J. Cleaner Product., 102, 78-87. https://doi.org/10.1016/j.jclepro.2015.04.072
- Thomas, B.S. and Gupta, R.C. (2016), "Properties of high strength concrete containing scrap tire rubber", J. Cleaner Product., 113, 86-92. https://doi.org/10.1016/j.jclepro.2015.11.019
- Thomas, B.S., Gupta, R.C., Kalla, P. and Cseteneyi, L. (2014), "Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates", Constr. Build. Mater., 59, 204-212. https://doi.org/10.1016/j.conbuildmat.2014.01.074
- Thomas, B.S., Kumar, S., Mehra, P., Gupta, R.C., Joseph, M. and Csetenyi, L.J. (2016), "Abrasion resistance of sustainable green concrete containing waste tire rubber particles", Constr. Build. Mater., 124, 906-909. https://doi.org/10.1016/j.conbuildmat.2016.07.110
- Toma, I.O., Taranu, N., Banu, O.M., Budescu, M., Mihai, P. and Taran, R.G. (2015), "The effect of the aggregate replacement by waste tyre rubber crumbs on the mechanical properties of concrete", Revista Romana de Materiale/Roman. J. Mater., 45(4), 394-401.
- Wang, J., Dai, Q., Guo, S. and Si, R. (2019), "Study on rubberized concrete reinforced with different fibers", ACI Mater. J., 116(2). https://doi.org/10.14359/51712266
- Wong, S.F. and Ting, S.K. (2009), "Use of recycled rubber tires in normaland high-strength concretes", ACI Mater. J., 106(4), 325. https://doi.org/10.14359/56652
- Xie, Y., Su, X.R., Wang, H.X., Luo, D.M. and Zhou, Y.L. (2019), "Experimental analysis of the toughness mechanism of rubber concrete", In: IOP Conference Series: Materials Science and Engineering, Vol. 504, No. 1, p. 012041. https://doi.org/10.1088/1757-899X/504/1/012041
- Youssf, O., Elgawady, M.A., Mills, J.E. and Ma, X. (2014), "An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes", Constr. Build. Mater., 53, 522-532. https://doi.org/10.1016/j.conbuildmat.2013.12.007
- Youssf, O., ElGawady, M.A., Mills, J.E. and Ma, X. (2017), "Analytical modeling of the main characteristics of crumb rubber concrete", Am. Concrete Inst., ACI Special Publication, 314, 1-18.
- Zhang, Z., Paul, S.C., Panda, B., Huang, Y., Garg, A., Zhang, Y., Garg, A. and Zhang, W. (2020), "Assessment of flexural and splitting strength of steel fiber reinforced concrete using automated neural network search", Adv. Concrete Constr., Int. J., 10(1), 81-92. https://doi.org/10.12989/acc.2020.10.1.081.