DOI QR코드

DOI QR Code

Valorization of bottom ash with geopolymer synthesis: Optimization of pastes and mortar

  • Froener, Muriel S. (Building Innovation Research Unit, Universidade Federal do Rio Grande do Sul (NORIE/UFRGS)) ;
  • Longhi, Marlon A. (Building Innovation Research Unit, Universidade Federal do Rio Grande do Sul (NORIE/UFRGS)) ;
  • de Souza, Fabiana (Building Innovation Research Unit, Universidade Federal do Rio Grande do Sul (NORIE/UFRGS)) ;
  • Rodriguez, Erich D. (Department of Structures and Civil Construction, Technology Centre, Universidade Federal de Santa Maria (UFSM)) ;
  • Kirchheim, Ana Paula (Building Innovation Research Unit, Universidade Federal do Rio Grande do Sul (NORIE/UFRGS))
  • Received : 2021.12.23
  • Accepted : 2022.06.07
  • Published : 2022.07.25

Abstract

Due to the physical-chemical characteristics of some bottom ash (BA), there are technical, economic and environmental limitations to find a destination that will add value to it. In Brazil, this residue is eventually used for filling coal extraction pits or remains in sedimentation ponds, creating a susceptible panorama to environmental issues. The geopolymers binders are one of the alternatives to the proper use high amounts of these materials. In this work, geopolymeric binder pastes were produced with BA mixed to activators with different alkali contents (expressed as %Na2O), as well as the incorporation of soluble silicates (Ms content). The production of binary geopolymeric pastes based on the use of two industrial wastes: fluid catalytic cracking (FCC) and aluminum anodizing sludge (AAS), was also assessed. The content in mass of BA/FCC and BA/AAS ranged from 100/0, 90/10; 80/20 and 70/30. Systems with soluble silicates as activator in a molar ratio SiO2/Na2O of 1.0 (Ms = 1.0) and Na2O content of 15%, showed the best results of mechanical strength (42 MPa at day 28th). The improvement is up to 5X when compared to NaOH based systems. For systems with partial replacement of BA of 10% of AAS and 20% of FCC (80/20), the presence of soluble silicates was also effective to increase compressive strength.

Keywords

Acknowledgement

The participation of Brazilian authors was sponsored by CNPq (Brazilian National Council for Scientific and Technological Development) through the research project UNIVERSAL grant number 458597/2014-7 and the research fellowships PQ2017 303753/2017-0 and 305530/2017- 8.

References

  1. Alonso, S. and Palomo, A. (2001), "Alkaline activation of metakaolin and calcium hydroxide mixtures: Influence of temperature, activator concentration and solids ratio", Mater. Lett., 47(1-2), 55-62. https://doi.org/10.1016/S0167-577X(00)00212-3
  2. Amaral Filho, J.R.D., Schneider, I.A.H., de Brum, I.A., Sampaio, C.H., Miltzarek, G. and Schneider, C. (2013), "Caracterizacao de um deposito de rejeitos para o gerenciamento integrado dos residuos de mineracao na regiao carbonifera de Santa Catarina, Brasil", Revista Escola de Minas, 66(c), 347-353. https://doi.org/10.1590/S0370-44672013000300012
  3. Boonserm, K., Sata, V., Pimraksa, K. and Chindaprasirt, P. (2012), "Improved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive", Cement Concrete Compos., 34(7), 819-824. https://doi.org/10.1016/j.cemconcomp.2012.04.001
  4. Boca Santa, R.A.A. (2012), "Desenvolvimento de geopolimeros a partir de cinzas pesadas oriundas da queima do carvao mineral e metacaulim sintetizado a partir de residuo da industria de papel", Universidade Federal de Santa Catarina, Florianopolis, Brazil.
  5. Chindaprasirt, P., Jaturapitakkul, C., Chalee, W. and Rattanasak, U. (2009), "Comparative study on the characteristics of fly ash and bottom ash geopolymers", Waste Manag., 29(2), 539-543. https://doi.org/10.1016/j.wasman.2008.06.023
  6. Chotetanorm, C., Chindaprasirt, P., Sata, V., Rukzon, S. and Sathonsaowaphak, A. (2013), "High-calcium bottom ash geopolymer: sorptivity, pore size, and resistance to sodium sulfate attack", J. Mater. Civil Eng., 25(1), 105-111. https://doi.org/10.1061/(ASCE)MT.1943-5533
  7. Costa, E.B.D. (2013), "Aproveitamento do Residuo de Anodizacao do aluminio na Producao do Cimento Sulfoaluminato de Calcio Belitico", Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
  8. Criado, M., Fernandez-Jimenez, A., De La Torre, A.G., Aranda, M.A.G. and Palomo, A. (2007a), "An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash", Cement Concrete Res., 37(5), 671-679. https://doi.org/10.1016/j.cemconres.2007.01.013
  9. Criado, M., Fernandez-Jimenez, A. and Palomo, A. (2007b), "Alkali activation of fly ash: Effect of the SiO2/Na2O ratio", Micropor. Mesopor. Mater., 106(1-3), 180-191. https://doi.org/10.1016/j.micromeso.2007.02.055
  10. Criado, M., Fernandez-Jimenez, A., Palomo, A., Sobrados, I. and Sanz, J. (2008), "Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey", Micropor. Mesopor. Mater., 109(1-3), 525-534. https://doi.org/10.1016/j.micromeso.2007.05.062
  11. Cunha, A.L.C.da. (2012), "Caracterizacao e Estudo de Aplicacao de Rejeito Catalitico de Unidade FCC como Material Pozolanico", Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
  12. da Costa, E.B., Rodriguez, E.D., Bernal, S.A., Provis, J.L., Gobbo, L.A. and Kirchheim, A.P. (2016), "Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge", Constr. Build. Mater., 122, 373-383. https://doi.org/10.1016/j.conbuildmat.2016.06.022
  13. Deabriges, J. (1982), Patente US 4,336,235: Process for the manufacture of sodium silicate, pp. 334-337.
  14. DNPM (2016), Sumario Mineral 2015 (Vol. 35), Brasilia.
  15. Duxson, P., Mallicoat, S.W., Lukey, G.C., Kriven, W.M. and Van Deventer, J.S. (2007a), "The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers", Colloids Surf. A: Physicochem. Eng. Aspects, 292(1), 8-20. https://doi.org/10.1016/j.colsurfa.2006.05.044
  16. Duxson, P., Provis, J.L., Lukey, G.C. and Van Deventer, J.S. (2007b), "The role of inorganic polymer technology in the development of 'green concrete'", Cement Concrete Res., 37(12), 1590-1597. https://doi.org/10.1016/j.cemconres.2007.08.018
  17. Fawer, M., Concannon, M. and Rieber, W. (1999), "Life cycle inventories for the production of sodium silicates", Int. J. Life Cycle Assess., 4(4), 207-212. https://doi.org/10.1007/BF02979498
  18. Fernandez-Jimenez, A. and Palomo, A. (2005), "Composition and microstructure of alkali activated fly ash binder: Effect of the activator", Cement Concrete Res., 35(10), 1984-1992. https://doi.org/10.1016/j.cemconres.2005.03.003
  19. Guerrieri, M., Sanjayan, J. and Collins, F. (2009), "Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures", Mater. Struct., 43(6), 765-773. https://doi.org/10.1617/s11527-009-9546-3
  20. Hardjito, D., Wallah, S.E., Sumajouw, D.M.J. and Rangan, B.V. (2004), "Brief review of development of geopolymer concrete", Proceedings of the 8th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Las Vegas, AZ, USA, May.
  21. Izquierdo, S., Diaz, J., Mejia, R. and Torres, J. (2013), "Cemento adicionado con un residuo del proceso de craqueo catalitico (FCC): Hidratacion y microestructura", Revista Ingenieria de Construccion, 28(2), 141-154. https://doi.org/10.7764/ricuc.28.2.469
  22. Jindal, B.B., Singhal, D., Sharma, S.K. and Ashish, D.K. (2017), "Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine", Adv. Concrete Constr., Int. J., 5(1), 17-29. https://doi.org/10.12989/acc.2017.5.1.017
  23. Juenger, M.C.G., Winnefeld, F., Provis, J.L. and Ideker, J.H. (2011), "Advances in alternative cementitious binders", Cement Concrete Res., 41(12), 1232-1243. https://doi.org/10.1016/j.cemconres.2010.11.012
  24. Kim, S., Ryu, G., Koh, K. and Lee, J. (2012), "Flowability and strength development characteristics of bottom ash based geopolymer", Int. J. Civil Environ. Eng., 6(10), 915-920. https://doi.org/10.5281/zenodo.1075180
  25. Kouamo, H.T., Elimbi, A., Mbey, J.A., Sabouang, C.N. and Njopwouo, D. (2012), "The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products : A comparative study", Constr. Build. Mater., 35, 960-969. https://doi.org/10.1016/j.conbuildmat.2012.04.023
  26. Kurtoglu, A.E., Alzeebaree, R., Aljumaili, O., Nis, A., Gulsan, M.E., Humur, G. and Cevik, A. (2018), "Mechanical and durability properties of fly ash and slag based geopolymer concrete", Adv. Concrete Constr., Int. J., 6(4), 345-362. https://doi.org/10.12989/acc.2018.6.4.345
  27. Lee, W.K.W. and Van Deventer, J.J. (2002), "Effects of anions on the formation of aluminosilicate gel in geopolymers", Indust. Eng. Chem. Res., 41, 4550-4558. https://doi.org/doi:10.1021/ie0109410
  28. Longhi, M.A. (2015), "Alcali-ativacao de lodo de caulim calcinado e cinza pesada com ativadores convencionais e silicato de sodio alternativo", Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
  29. Longhi, M.A., Walkley, B., Rodriguez, E.D., Kirchheim, A.P., Zhang, Z. and Wang, H. (2019), "New selective dissolution process to quantify reaction extent and product stability in metakaolin-based geopolymers", Compos. Part B: Eng., 176, 107172. https://doi.org/10.1016/j.compositesb.2019.107172
  30. Longhi, M.A., Rodriguez, E.D., Walkley, B., Zhang, Z. and Kirchheim, A.P. (2020), "Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation", Compos. Part B: Eng., 182, 107671. https://doi.org/10.1016/j.compositesb.2019.107671
  31. Melo, L.D.A. (2011), "Sintese e caracterizacao de geopolimeros contendo filitos", Instituto militar de Engenharia, Rio de Janeiro, Brazil.
  32. Nazari, A. and Sanjayan, J.G. (2015), "Synthesis of geopolymer from industrial wastes", J. Cleaner Product., 99, 297-304. https://doi.org/10.1016/j.jclepro.2015.03.003
  33. Palomo, A., Alonso, S. and Fernandez-Jimenez, A. (2004), "Alkaline Activation of Fly Ashes : NMR Study of the Reaction Products", J. Am. Ceramic Soc., 87(6), 1141-1145. https://doi.org/10.1111/j.1551-2916.2004.01141.x
  34. Passuello, A., Rodriguez, E.D., Hirt, E., Longhi, M., Bernal, S.A., Provis, J.L. and Kirchheim, A.P. (2017), "Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators", J. Cleaner Product., 166, 680-689. https://doi.org/10.1016/j.jclepro.2017.08.007
  35. Paya, J., Monzo, J., Borrachero, M.V. and Peris-Mora, E. (1995), "Mechanical treatment of fly ashes. Part I: Physico-chemical characterization of ground ashes", Cement Concrete Res., 25(7), 1469-1479. https://doi.org/10.1016/0008-8846(95)00141-X
  36. Provis, J.L. and Bernal, S.A. (2014), "Geopolymers and related alkali-activated materials", Annual Rev. Mater. Res., 44(1), 140205180727009. https://doi.org/10.1146/annurev-matsci-070813-113515
  37. Provis, J.L., Duxson, P., Lukey, G.C., Separovic, F., Kriven, W.M. and Van Deventer, J.S. (2005), "Modeling speciation in highly concentrated alkaline silicate solutions", Indust. Eng. Chem. Res., 44(23), 8899-8908. https://doi.org/10.1021/ie050700i
  38. Ren, X., Zhang, L., Ramey, D., Waterman, B. and Ormsby, S. (2014), "Utilization of aluminum sludge (AS) to enhance mine tailings-based geopolymer", J. Mater. Sci., 50(3), 1370-1381. https://doi.org/10.1007/s10853-014-8697-y
  39. Rodriguez, E.D., Bernal, S.A., Provis, J.L., Gehman, J.D., Monzo, J.M., Paya, J. and Borrachero, M.V. (2013), "Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process", Fuel, 109, 493-502. https://doi.org/10.1016/j.fuel.2013.02.053
  40. Rohde, G.M. and Zwonok, O. (2006), Cinzas de carvao fossil no Brasil, (G. Rohde, Ed.) (1st Ed.), Cientec, Porto Alegre, Brasil.
  41. Rowles, M. and O'Connor, B. (2003), "Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite", J. Mater. Chem., 13, 1161-1165. https://doi.org/10.1039/b212629j
  42. Sartor, M.N. (2006), "Caracterizacao do residuo de anodizacao do aluminio como materia-prima para o desenvolvimento de produtos ceramicos", Universidade Federal de Santa Catarina, Florianopolis, Brazil.
  43. Sata, V., Sathonsaowaphak, A. and Chindaprasirt, P. (2012), "Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack", Cement Concrete Compos., 34(5), 700-708. https://doi.org/10.1016/j.cemconcomp.2012.01.010
  44. Sathonsaowaphak, A., Chindaprasirt, P. and Pimraksa, K. (2009), "Workability and strength of lignite bottom ash geopolymer mortar", J. Hazard. Mater., 168(1), 44-50. https://doi.org/10.1016/j.jhazmat.2009.01.120
  45. Singhal, D. (2017), "Development of mix design method for geopolymer concrete", Adv. Concrete Constr., Int. J., 5(4), 377-390. https://doi.org/10.12989/acc.2017.5.4.377
  46. Slavik, R., Bednarik, V., Vondruska, M. and Nemec, A. (2008), "Preparation of geopolymer from fluidized bed combustion bottom ash", J. Mater. Process. Technol., 200(1-3), 265-270. https://doi.org/10.1016/j.jmatprotec.2007.09.008
  47. Swaddle, T.W. (2001), "Silicate complexes of aluminum (III) in aqueous systems", Coord. Chem. Rev., 221, 665-686. https://doi.org/10.1016/S0010-8545(01)00362-9
  48. Tashima, M.M., Akasaki, J.L., Castaldelli, V.N., Soriano, L., Monzo, J., Paya, J. and Borrachero, M.V. (2012), "New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC)", Mater. Lett., 80, 50-52. https://doi.org/10.1016/j.matlet.2012.04.051
  49. Topcu, I.B., Toprak, M.U. and Uygunoglu, T. (2014), "Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement", J. Cleaner Product., 81, 211-217. https://doi.org/10.1016/j.jclepro.2014.06.037
  50. Trochez, J.J., Mejia de Gutierrez, R., Rivera, J. and Bernal, S.A. (2015), "Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O3 and Na2O/SiO2 molar ratios", Materiales de Construccion, 65, 1-11. https://doi.org/10.3989/mc.2015.00814
  51. World Coal Association, (2014), Coal Facts 2014, London, UK.
  52. Xu, H., Li, Q., Shen, L., Wang, W. and Zhai, J. (2010), "Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes", J. Hazard. Mater., 175(1-3), 198-204. https://doi.org/10.1016/j.jhazmat.2009.09.149
  53. Zhang, Z., Wang, H., Provis, J.L., Bullen, F., Reid, A. and Zhu, Y. (2012), "Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide", Thermochimica Acta, 539, 23-33. https://doi.org/10.1016/j.tca.2012.03.021
  54. Zhang, Z., Provis, J.L., Wang, H., Bullen, F. and Reid, A. (2013), "Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin", Thermochimica Acta, 565, 163-171. https://doi.org/10.1016/j.tca.2013.01.040