Acknowledgement
The research described in this paper was financially supported by the China Three Gorges Corporation (WDD/0490, WDD/0578; BHT/0805) and the National Natural Science Foundation of China (No. 51979146).
References
- Barla, G., Fan, Q. and Lin, P. (2018), "Introduction to the Special Issue "Super high arch dams and underground caverns in China"", Rock Mech. Rock Eng., 51, 2447-2450. https://doi.org/10.1007/s00603-018-1551-9
- Chen, S. and Guo, L. (2011), "Simulation analysis of concrete temperature and stress of plant elbow section of Sluice Dam", Adv. Mater. Res., 368, 3011-3014. https://doi.org/10.4028/www.scientific.net/AMR.368-373.3011
- Chen, Q., Qi, Y. and Gong, Y. (2012), "Cracking analysis of spiral case structure with combinatorial embedding manner of large underground power station turbine unit", Appl. Mech. Mater., 212, 917-921. https://doi.org/10.4028/www.scientific.net/AMM.212-213.917
- Conceicao, J., Faria, R., Azenha, M., Mamede, F. and Souza, F. (2014), "Early-age behaviour of the concrete surrounding a turbine spiral case: Monitoring and thermo-mechanical modelling", Eng. Struct., 81, 327-340. https://doi.org/10.1016/j.engstruct.2014.10.009
- Farzampour, A. (2017), "Temperature and humidity effects on behavior of grouts", Adv. Concrete Constr., Int. J., 5(6), 659-669. https://doi.org/10.12989/acc.2017.5.6.659
- Ha, J., Jung, Y. and Cho, Y. (2014), "Thermal crack control in mass concrete structure using an automated curing system", Automat. Constr., 45, 16-24. https://doi.org/10.1016/j.autcon.2014.04.014
- Jena, J., Basa, B. and Panda, S. (2013), "Stress analysis around spiral casing of francis turbine of a hydel power house by finite element method", Proceedings of International Conference on Structural Engineering and Mechanics, Rourkela, India, December.
- Jing, X., Liu, X., Zhou, W. and Chang, X. (2014), "Real-time temperature control for high arch dam based on decision support system", Transact. Tianjin Univ., 20(2), 118-125. https://doi.org/10.1007/s12209-014-2210-1
- Lin, P., Li, Q. and Hu, H. (2012), "A flexible network structure for temperature monitoring of a super high arch dam", Int. J. Distribut. Sensor Networks, 8(11), 917849. https://doi.org/10.1155/2012/917849
- Lin, P., Li, Q., Zhou, S. and Hu, Y. (2013), "Intelligent cooling control method and system for mass concrete", J. Hydraul. Eng., 44(8), 950-957. [In Chinese]
- Lin, P., Li, Q. and Jia, P. (2014), "A real-time temperature data transmission approach for intelligent cooling control of mass concrete", Mathe. Probl. Eng., 8, 1-10. https://doi.org/10.1155/2014/514606
- Lin, P., Wei, P., Wang, W. and Huang, H. (2018), "Cracking risk and overall stability analysis of Xulong high arch dam: a case study", Appl. Sci., 8, 2555. https://doi.org/10.3390/app8122555
- Lin, P., Ning, Z., Shi, J., Liu, C., Chen, W. and Tan, Y. (2020), "Study on the gallery structure cracking mechanisms and cracking control in dam construction site", Eng. Fail. Anal., 121, 1-20. https://doi.org/10.1016/j.engfailanal.2020.105135
- Niu, X. (2020), "Conditions for the occurrence of notable edge waves due to atmospheric disturbances", Appl. Ocean Res., 101, 102255. https://doi.org/10.1016/j.apor.2020.102255
- Ouyang, J., Chen, X., Huangfu, Z., Lu, C., Huang, D. and Li, Y. (2019), "Application of distributed temperature sensing for cracking control of mass concrete", Constr. Build. Mater., 197, 778-791. https://doi.org/10.1016/j.conbuildmat.2018.11.221
- Pradhan, N. and Jena, J. (2016), "Stresses and deformations in concrete encasing spiral case of a hydro-turbine by finite element method", IJET, 8(1), 155-161.
- Qiang, S., Leng, X., Wang X., Zhang, J. and Hua, X. (2019), "An automated control system for concrete temperature development in construction", Comput. Concrete, Int. J., 24(5), 437-444. https://doi.org/10.12989/cac.2019.24.5.437
- Quivik, F.L. (2013), "Cooling mass concrete: Owyhee, Hoover, and building large dams", Proceedings of the Institution of Civil Engineers-Engineering History and Heritage, 166(4), 236-247. https://doi.org/10.1680/ehah.12.00015
- Schackow, A., Effting, C., Gomes, I.R., Patruni, I.Z., Vicenzi, F. and Kramel, C. (2016), "Temperature variation in concrete samples due to cement hydration", Appl. Therm. Eng., 103, 1362-1369. https://doi.org/10.1016/j.applthermaleng.2016.05.048
- Wu, X., Yu, S., Tao, X., Chen, B., Liu, H., Yang, M. and Kang, T. (2020), "Behavior of UHPC-RW-RC wall panel under various temperature and humidity conditions", Adv. Concrete Constr., Int. J., 9(5), 459-467. https://doi.org/10.12989/acc.2020.9.5.459
- Xu, X., Luo, Q. and Ma, Z. (2011), "Numerical simulation of temperature and creep of concrete surrounding spiral case in a hydraulic plant", Adv. Mater. Res., 194, 977-980. https://doi.org/10.4028/www.scientific.net/AMR.194-196.977
- Zhang, J., Duan, Y. and Wang, J. (2013), "Temperature control research on spiral case concrete of Xiluodu underground power plant during construction", Appl. Mech. Mater., 328, 933-941. https://doi.org/10.4028/www.scientific.net/AMM.328.933
- Zhang, B., Cullen, M. and Kilpatrick, T. (2016), "Spalling of heated high performance concrete due to thermal and hygric gradients", Adv. Concrete Constr., Int. J., 4(1), 1-14. https://doi.org/10.12989/acc.2016.4.1.001
- Zhang, L., Zhang, G., Liu, Y., Deng, X. and Yang, L. (2017), "Development and application for intelligent monitoring system of concrete temperature control", Proceedings of the 2nd International Conference on Modelling, Simulation and Applied Mathematics. https://doi.org/10.2991/msam-17.2017.57