장쇄 수산화 아세틸코에이 탈수소효소 결핍증에 대한 고찰

Very Long Chain Acyl-coenzyme A Dehydrogenase Deficiency: A Review of Pathophysiology, Clinical Manifestations, Diagnosis, and Treatment

  • 강석진 (계명대학교 의과대학 소아청소년과학교실)
  • Kang, Seokjin (Department of Pediatrics Keimyung University School of Medicine)
  • 발행 : 2022.06.30

초록

Very long-chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency (VLCADD) leads to a defective 𝛽-oxidation, specifically during prolonged fasting, infection, or exercise. Patients with VLCADD usually suffer from cardiomyopathy, hypoketotic hypoglycemia, hepatic dysfunction, exercise intolerance, muscle pain, and rhabdomyolysis, and sometimes succumb to sudden death. VLCADD is generally classified into three phenotypes: severe early-onset cardiac and multiorgan failure, hypoketotic hypoglycemia, and later-onset episodic myopathy. Diagnostic evaluation comprises acylcarnitine analysis, genetic analysis, and VLCAD activity assay. In the acylcarnitine analysis, the key metabolites are C14:1, C14:2, C14, and C12:1. A C14:1 level >1 mmol/L strongly suggests VLCADD. Various treatment recommendations are available for this condition. Dietary management includes decreasing fat content, increasing medium-chain triglyceride levels, and decreasing fasting periods. Supplementation with L-carnitine is controversial. Triheptanoin (a seven-carbon fatty acid triglyceride) treatment demonstrates improvement of cardiac functions. Bezafibrate may improve the quality of life of patients with VLCAD.

키워드

참고문헌

  1. Leslie ND, Valencia CA, Strauss AW, Zhang K. Very long-chain acyl-coenzyme A dehydrogenase deficiency. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Mirzaa GM, Amemiya A, eds. GeneReviews®[Internet]. University of Washington, Seatle, 2021;1993-2022.
  2. Wanders RJ, Vreken P, den Boer ME, Wijburg FA, van Gennip AH, L IJlst. Disorders of mitochondrial fatty acyl-CoA beta-oxidation. J Inherit Metab Dis 1999;22:442-87. https://doi.org/10.1023/A:1005504223140
  3. Yamada K, Shiraishi H, Oki E, Ishige M, Fukao T, Hamada Y, et al. Open-label clinical trial of bezafibrate treatment in patients with fatty acid oxidation disorders in Japan. Mol Genet Metab Rep 2018;15:55-63. https://doi.org/10.1016/j.ymgmr.2018.02.003
  4. Wilcken B, Wiley V, Hammond J, Carpenter K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med 2003;348:2304-12. https://doi.org/10.1056/NEJMoa025225
  5. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010;90:207-58. https://doi.org/10.1152/physrev.00015.2009
  6. Eaton S, Bartlett K, Pourfarzam M. Mammalian mitochondrial beta-oxidation. Biochem J 1996;320(Pt 2)(Pt 2):345-57. https://doi.org/10.1042/bj3200345
  7. Reddy JK, Hashimoto T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr 2001;21:193-230. https://doi.org/10.1146/annurev.nutr.21.1.193
  8. van den Berghe G. The role of the liver in metabolic homeostasis: implications for inborn errors of metabolism. J Inherit Metab Dis 1991;14:407-20. https://doi.org/10.1007/BF01797914
  9. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 2013;17:162-84. https://doi.org/10.1016/j.cmet.2012.12.012
  10. Bonnet D, Martin D, Lonlay PD, Villain E, Jouvet P, Rabier D, et al. Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 1999;100:2248-53. https://doi.org/10.1161/01.CIR.100.22.2248
  11. Katz S, Landau Y, Pode-Shakked B, Pessach IM, Rubinshtein M, Anikster Y, et al. Cardiac failure in very long chain acyl-CoA dehydrogenase deficiency requiring extracorporeal membrane oxygenation (ECMO) treatment: A case report and review of the literature. Mol Genet Metab Rep 2016;10:5-7. https://doi.org/10.1016/j.ymgmr.2016.11.008
  12. Pena LDM, van Calcar SC, Hansen J, Edick MJ, Vockley CW, Leslie N, et al. Outcomes and genotype-phenotype correlations in 52 individuals with VLCAD deficiency diagnosed by NBS and enrolled in the IBEM-IS database. Mol Genet Metab 2016;118: 272-81. https://doi.org/10.1016/j.ymgme.2016.05.007
  13. Zhang R-N, Li Y-F, Qiu W-J, Ye J, Han L-S, Zhang H-W, et al. Clinical features and mutations in seven Chinese patients with very long chain acyl-CoA dehydrogenase deficiency. World J Pediatr 2014; 10:119-25. https://doi.org/10.1007/s12519-014-0480-2
  14. Laforet P, Acquaviva-Bourdain C, Rigal O, Brivet M, Penisson-Besnier I, Chabrol B, et al. Diagnostic assessment and long-term follow-up of 13 patients with Very Long-Chain Acyl-Coenzyme A dehydrogenase (VLCAD) deficiency. Neuromuscul Disord 2009;19:324-9. https://doi.org/10.1016/j.nmd.2009.02.007
  15. Merinero B, Alcaide P, Martin-Hernandez E, Morais A, Garcia-Silva MT, Quijada-Fraile P, et al. Four Years' Experience in the Diagnosis of Very Long-Chain Acyl-CoA Dehydrogenase Deficiency in Infants Detected in Three Spanish Newborn Screening Centers. JIMD Rep 2018;39:63-74.
  16. McHugh DMS, Cameron CA, Abdenur JE, Abdulrahman M, Adair O, Al Nuaimi SA, et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project. Genet Med 2011; 13:230-54. https://doi.org/10.1097/GIM.0b013e31820d5e67
  17. Miller MJ, Burrage LC, Gibson JB, Strenk ME, Lose EJ, Bick DP, et al. Recurrent ACADVL molecular findings in individuals with a positive newborn screen for very long chain acyl-coA dehydrogenase (VLCAD) deficiency in the United States. Mol Genet Metab 2015;116:139-45. https://doi.org/10.1016/j.ymgme.2015.08.011
  18. Boneh A, Andresen BS, Gregersen N, Ibrahim M, Tzanakos N, Peters H, et al. VLCAD deficiency: pitfalls in newborn screening and confirmation of diagnosis by mutation analysis. Mol Genet Metab 2006; 88:166-70. https://doi.org/10.1016/j.ymgme.2005.12.012
  19. Hesse J, Braun C, Behringer S, Matysiak U, Spiekerkoetter U, Tucci S. The diagnostic challenge in very-long chain acyl-CoA dehydrogenase deficiency (VLCADD). J Inherit Metab Dis 2018;41:1169-78. https://doi.org/10.1007/s10545-018-0245-5
  20. Pervaiz MA, Kendal F, Hegde M, Singh RH. MCT oil-based diet reverses hypertrophic cardiomyopathy in a patient with very long chain acyl-coA dehydrogenase deficiency. Indian J Hum Genet 2011;17:29-32. https://doi.org/10.4103/0971-6866.82190
  21. Hoffmann L, Haussmann U, Mueller M, Spiekerkoetter U. VLCAD enzyme activity determinations in newborns identified by screening: a valuable tool for risk assessment. J Inherit Metab Dis 2012;35:269-77. https://doi.org/10.1007/s10545-011-9391-8
  22. Diekman EF, Ferdinandusse S, van der Pol L, Waterham HR, Ruiter JPN, Ijlst L, et al. Fatty acid oxidation flux predicts the clinical severity of VLCAD deficiency. Genet Med 2015;17:989-94. https://doi.org/10.1038/gim.2015.22
  23. Olpin SE, Manning NJ, Pollitt RJ, Clarke S. Improved detection of long-chain fatty acid oxidation defects in intact cells using [9,10-3H]oleic acid. J Inherit Metab Dis 1997;20:415-9. https://doi.org/10.1023/A:1005358802096
  24. Manning NJ, Olpin SE, Pollitt RJ, Webley J. A comparison of [9,10-3H]palmitic and [9,10-3H]myristic acids for the detection of defects of fatty acid oxidation in intact cultured fibroblasts. J Inherit Metab Dis 1990;13:58-68. https://doi.org/10.1007/BF01799333
  25. Spiekerkoetter U, Lindner M, Santer R, Grotzke M, Baumgartner MR, Boehles H, et al. Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop. J Inherit Metab Dis 2009;32:498-505. https://doi.org/10.1007/s10545-009-1126-8
  26. Van Calcar SC, Sowa M, Rohr F, Beazer J, Setlock T, Weihe TU, et al. Nutrition management guideline for very-long chain acyl-CoA dehydrogenase deficiency (VLCAD): An evidenceand consensus-based approach. Mol Genet Metab 2020;131:23-37. https://doi.org/10.1016/j.ymgme.2020.10.001
  27. Behrend AM, Harding CO, Shoemaker JD, Matern D, Sahn DJ, Elliot DL, et al. Substrate oxidation and cardiac performance during exercise in disorders of long chain fatty acid oxidation. Mol Genet Metab 2012;105:110-5. https://doi.org/10.1016/j.ymgme.2011.09.030
  28. Bleeker JC, Kok IL, Ferdinandusse S, de Vries M, Derks TGJ, Mulder MF, et al. Proposal for an individualized dietary strategy in patients with very long-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2019;42:159-68. https://doi.org/10.1002/jimd.12037
  29. Gillingham MB, Heitner SB, Martin J, Rose S, Goldstein A, El-Gharbawy AH, et al. Triheptanoin versus trioctanoin for long-chain fatty acid oxidation disorders: a double blinded, randomized controlled trial. J Inherit Metab Dis 2017;40:831-43. https://doi.org/10.1007/s10545-017-0085-8
  30. Gnoni A, Longo S, Gnoni GV, Giudetti AM. Carnitine in Human Muscle Bioenergetics: Can Carnitine Supplementation Improve Physical Exercise? Molecules 2020;25:182. https://doi.org/10.3390/molecules25010182
  31. Primassin S, Veld FT, Mayatepek E, Spiekerkoetter U. Carnitine supplementation induces acylcarnitine production in tissues of very long-chain acyl-CoA dehydrogenase-deficient mice, without replenishing low free carnitine. Pediatr Res 2008;63:632-7. https://doi.org/10.1203/PDR.0b013e31816ff6f0
  32. Bonnefont JP, Bastin J, Laforet P, Aubey F, Mogenet A, Romano S, et al. Long-term follow-up of bezafibrate treatment in patients with the myopathic form of carnitine palmitoyltransferase 2 deficiency. Clin Pharmacol Ther 2010;88:101-8. https://doi.org/10.1038/clpt.2010.55
  33. Orngreen MC, Madsen KL, Preisler N, Andersen G, Vissing J, Laforet P. Bezafibrate in skeletal muscle fatty acid oxidation disorders: a randomized clinical trial. Neurology 2014;82:607-13. https://doi.org/10.1212/WNL.0000000000000118