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DISTRIBUTION OF ZEROS OF THE COSINE-TANGENT AND
SINE-TANGENT POLYNOMIALS†
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Abstract. In this paper we give some interesting properties of the cosine
tangent polynomials and sine tangent polynomials. In addition, we give
some identities for these polynomials and the distribution of zeros of these
polynomials.
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1. Introduction

Many mathemations studied in the field of the Bernoulli numbers and poly-
nomials, Euler numbers and polynomials, Genocchi numbers and polynomials,
and tangent numbers and polynomials (see [1, 2, 3, 4, 5, 6, 7, 8, 9]). It is well
known that the Bernoulli polynomials are defined by the generating function to
be (

t

et − 1

)
ext =

∞∑
n=0

Bn(x)
tn

n!
. (1)

When x = 0, Bn = Bn(0) are called the Bernoulli numbers. The tangent poly-
nomials are given by the generating function to be(

2

e2t + 1

)
ext =

∞∑
n=0

Tn(x)
tn

n!
. (2)

When x = 0, Tn = Tn(0) are called the tangent numbers (see [6, 7]).
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The Bernoulli polynomials B(r)
n (x) of order r are defined by the following

generating function(
t

et − 1

)r

ext =

∞∑
n=0

B(r)
n (x)

tn

n!
, (|t| < 2π). (3)

The Frobenius–Euler polynomials of order r, denoted by H(r)
n (u, x), are defined

as (
1− u

et − u

)r

ext =

∞∑
n=0

H(r)
n (u, x)

tn

n!
. (4)

The values at x = 0 are called Frobenius-Euler numbers of order r; when r = 1,
the polynomials or numbers are called ordinary Frobenius-Euler polynomials or
numbers. In [4], we introduced the cosine-Bernoulli, sine-Bernoulli, cosine-Euler,
and sine-Euler polynomials. We also obtained some identities for these polynomi-
als. The cosine-Bernoulli polynomials B(C)

n (x, y) and cosine-Euler polynomials
E

(C)
n (x, y) are defined by means of the generating functions

∞∑
n=0

B(C)
n (x, y)

tn

n!
=

t

et − 1
ext cos yt, (5)

and
∞∑

n=0

E(C)
n (x, y)

tn

n!
=

2

et + 1
ext cos yt, (6)

respectively.
In this paper, we introduce some special polynomials which are related to

tangent polynomials. In addition, we give some identities for these polynomials.
Finally, we investigate the distribution of zeros of these polynomials.

2. Cosine-tangent and sine-tangent polynomials

In this section, we obtain some properties of the cosine-tangent and sine-
tangen polynomials. In [6, 7], we introduced tangent numbers and polynomials.
After that we investigated some their properties. In [5], Park and Kang defined
the cosine-tangent and sine-tangen polynomials. From now on, some results
are the same as [5], but we describe them again for better understanding. We
consider the tagent polynomials that are given by the generating function to be

∞∑
n=0

Tn(x+ iy)
tn

n!
=

2

e2t + 1
e(x+iy)t. (7)

On the other hand, we note that

e(x+iy)t = exteiyt = ext(cos yt+ i sin yt). (8)
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From (7) and (8), we obtain
∞∑

n=0

Tn(x+ iy)
tn

n!
=

2

e2t + 1
ext(cos yt+ i sin yt), (9)

and
∞∑

n=0

Tn(x− iy)
tn

n!
=

2

e2t + 1
ext(cos yt− i sin yt). (10)

Hence, by (9) and (10), we obtain

2

e2t + 1
ext cos yt =

∞∑
n=0

(
Tn(x+ iy) + Tn(x− iy)

2

)
tn

n!
, (11)

and
2

e2t + 1
ext sin yt =

∞∑
n=0

(
Tn(x+ iy)− Tn(x− iy)

2i

)
tn

n!
. (12)

It follows that Park and Kang defined the following cosine-tangent and sine-
tangent polynomials (see [5]).

Definition 2.1. The cosine-tangent polynomials T (C)
n (x, y) and sine-tangent

polynomials T (S)
n (x, y) are defined by means of the generating functions

∞∑
n=0

T (C)
n (x, y)

tn

n!
=

2

e2t + 1
ext cos yt, (13)

and
∞∑

n=0

T (S)
n (x, y)

tn

n!
=

2

e2t + 1
ext sin yt, (14)

respectively.

Note that T (C)
n (x, 0) = Tn(x), T

(S)
n (x, 0) = 0, (n ≥ 0).

By (11)-(14), we have

T (C)
n (x, y) =

Tn(x+ iy) + Tn(x− iy)

2
,

T (S)
n (x, y) =

Tn(x+ iy)− Tn(x− iy)

2i
.

Clearly, we obtain the following explicit representations of Tn(x+ iy)

Tn(x+ iy) =

n∑
l=0

(
n

l

)
Tl(x+ iy)n−l,

Tn(x+ iy) =

n∑
l=0

(
n

l

)
Tl(x)(iy)

n−l.
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Let

ext cos yt =

∞∑
l=0

Cl(x, y)
tl

l!
, ext sin yt =

∞∑
l=0

Sl(x, y)
tl

l!
. (15)

Then, by Taylor expansions of ext cos yt and ext sin yt, we get

ext cos yt =

∞∑
l=0

 [ l2 ]∑
m=0

(
l

2m

)
(−1)mxl−2my2m

 tl

l!
(16)

and

ext sin yt =

∞∑
l=0

[ l−1
2 ]∑

m=0

(
l

2m+ 1

)
(−1)mxl−2m−1y2m+1

 tl

l!
, (17)

where ’[ ]’ denotes taking the integer part (see [4]).
By (15), (16) and (17), we get

Cl(x, y) =

[ l2 ]∑
m=0

(
l

2m

)
(−1)mxl−2my2m,

and

Sl(x, y) =

[ l−1
2 ]∑

m=0

(
l

2m+ 1

)
(−1)mxl−2m−1y2m+1, (l ≥ 0).

Now, we observe that

2

e2t + 1
ext cos yt =

( ∞∑
l=0

Tl
tl

l!

)( ∞∑
m=0

Cm(x, y)
tm

m!

)

=

∞∑
n=0

(
n∑

l=0

(
n

l

)
TlCn−l(x, y)

)
tn

n!
.

Therefore, we obtain the following theorem (see [5]).

Theorem 2.2. For n ≥ 0, we have

T (C)
n (x, y) =

n∑
l=0

(
n

l

)
TlCn−l(x, y)

and

T (S)
n (x, y) =

n∑
l=0

(
n

l

)
TlSn−l(x, y).
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From (13), we have

2ext cos yt =

( ∞∑
l=0

T
(C)
l (x, y)

tl

l!

)(
e2t + 1

)
=

∞∑
n=0

(
n∑

l=0

(
n

l

)
T

(C)
l (x, y)2n−l + T (C)

n (x, y)

)
tn

n!
.

(18)

By (15) and (18), we get

Cn(x, y) =
1

2

(
n∑

l=0

(
n

l

)
T

(C)
l (x, y)2n−l + T (C)

n (x, y)

)
.

Therefore, we obtain the following theorem(see [5]).
Theorem 2.3. For n ≥ 0, we have

Cn(x, y) =
1

2

(
n∑

l=0

(
n

l

)
T

(C)
l (x, y)2n−l + T (C)

n (x, y)

)
,

and

Sn(x, y) =
1

2

(
n∑

l=0

(
n

l

)
T

(S)
l (x, y)2n−l + T (S)

n (x, y)

)
.

From (15), we note that
∞∑

n=0

T (C)
n (2− x, y)

tn

n!
=

2

e2t + 1
e(2−x)t cos yt

=
2

e−2t + 1
e−xt cos (−yt)

=

( ∞∑
m=0

(−1)mTm
tm

m!

)( ∞∑
m=0

(−1)mCm,(x, y)
tm

m!

)

=

∞∑
n=0

(
(−1)n

n∑
l=0

(
n

l

)
TlCn−l(x, y)

)
tn

n!
.

Therefore, we have the following theorem (see [5]).
Theorem 2.4. For n ≥ 0, we have

T (C)
n (2− x, y) = (−1)nT (C)

n (x, y)

= (−1)n
n∑

l=0

(
n

l

)
TlCn−l(x, y),

and
T (S)
n (2− x, y) = (−1)n+1T (S)

n (x, y)

= (−1)n+1
n∑

l=0

(
n

l

)
TlSn−l(x, y).
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Now, we observe that
∞∑

n=0

T (C)
n (x+ 2, y)

tn

n!
=

2

e2t + 1
e(x+2)t cos yt

=
2

e2t + 1
ext(e2t − 1 + 1) cos yt

= 2ext cos yt− 2

e2t + 1
ext cos yt

Hence we have
∞∑

n=0

(
T (C)
n (x+ 2, y) + T (C)

n (x, y)
) tn
n!

=

∞∑
n=0

(2Cn(x, y))
tn

n!
.

By comparing the coefficients on the both sides, we get the following theorem
(see [5]).

Theorem 2.5. For n ≥ 1, we have
T (C)
n (x+ 2, y) + T (C)

n (x, y) = 2Cn(x, y),

and
T (S)
n (x+ 2, y) + T (S)

n (x, y) = 2Sn(x, y).

From (15), we have
∞∑

m=0

Cm(0, y)
tm

m!
=

∞∑
m=0

(−1)my2m
t2m

(2m)!
. (19)

Therefore, by Theorem 2.5 and (19), we obtain the following corollary.

Corollary 2.6. For n ≥ 0, we have

T
(C)
2n (2, y) + T

(C)
2n (0, y) = 2(−1)ny2n,

and
T

(S)
2n+1(2, y) + T

(S)
2n+1(0, y) = 2(−1)ny2n+1.

By (15), we get
∞∑

n=0

T (C)
n (x+ r, y)

tn

n!
=

(
2

e2t + 1
ext cos yt

)
ert

=

( ∞∑
l=0

T
(C)
l (x, y)

tl

l!

)( ∞∑
k=0

rk
tk

k!

)

=

∞∑
n=0

(
n∑

k=0

(
n

k

)
T

(C)
k (x, y)rn−k

)
tn

n!
.

(20)

Therefore, by comparing the coefficients on the both sides, we obtain the follow-
ing theorem.
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Theorem 2.7. For n ≥ 0, r ∈ N, we have

T (C)
n (x+ r, y) =

n∑
k=0

(
n

k

)
T

(C)
k (x, y)rn−k,

and

T (S)
n (x+ r, y) =

n∑
k=0

(
n

k

)
T

(S)
k (x, y)rn−k.

Taking r = 2 in Theorem 2.7, by Theorem 2.5, we obtain the following corol-
lary.

Corollary 2.8. For n ≥ 0, we have
n∑

k=0

(
n

k

)
T

(C)
k (x, y)2n−k = 2Cn(x, y)− T (C)

n (x, y),

and
n∑

k=0

(
n

k

)
T

(S)
k (x, y)2n−k = 2Sn(x, y)− T (S)

n (x, y).

From Corollary 2.8, we note that

T (C)
n (0, y) +

n∑
k=0

(
n

k

)
T

(C)
k (0, y) =

{
0 if n = 2m+ 1

2(−1)my2m if n = 2m,

and

T (S)
n (0, y) +

n∑
k=0

(
n

k

)
T

(S)
k (0, y) =

{
2(−1)my2m+1 if n = 2m+ 1

0 if n = 2m.

By (13), we get
∞∑

n=1

∂

∂x
T (C)
n (x, y)

tn

n!
=

∂

∂x

(
2

e2t + 1
ext cos yt

)
=

2t

e2t + 1
ext cos yt

=

∞∑
n=1

(
nT

(C)
n−1(x, y)

) tn
n!
.

(21)

Comparing the coefficients on the both sides of (21), we have

∂

∂x
T (C)
n (x, y) = nT

(C)
n−1(x, y).
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Similarly, for n ≥ 1, we have
∂

∂x
T (S)
n (x, y) = nT

(S)
n−1(x, y),

∂

∂y
T (C)
n (x, y) = −nT (S)

n−1(x, y),

∂

∂y
T (S)
n (x, y) = nT

(C)
n−1(x, y).

Now, we define the new type polynomials that are given by the generating func-
tions to be

2

e2t + 1
cos yt =

∞∑
n=0

T (C)
n (y)

tn

n!
, (22)

and
2

e2t + 1
sin yt =

∞∑
n=0

T (S)
n (y)

tn

n!
, (23)

respectively.
Note that T (C)

n (0) = Tn, T (S)
n (0) = 0. The new type polynomials can be

determined explicitly. A few of them are

T
(C)
0 (y) = 1, T

(C)
1 (x, y) = −1,

T
(C)
2 (x, y) = −y2, T

(C)
3 (y) = 2 + 3y2,

T
(C)
4 (y) = y4, T

(C)
5 (y) = −16− 20y2 − 5y4,

T
(C)
6 (y) = −y6,

and
T

(S)
0 (x, y) = 0, T

(S)
1 (x, y) = y,

T
(S)
2 (x, y) = −2y, T

(S)
3 (x, y) = −y3,

T
(S)
4 (x, y) = 8y + 4y3, T

(S)
5 (x, y) = y5,

T
(S)
6 (x, y) = −96y − 40y3 − 6y5.

From (22) and (23), we derive the following equations:

2

e2t + 1
cos yt =

∞∑
k=0

 [ k2 ]∑
m=0

(
k

2m

)
(−1)mTk−2my

2m

 tk

k!
(24)

and

2

e2t + 1
sin yt =

∞∑
k=0

[ k−1
2 ]∑

m=0

(
k

2m+ 1

)
(−1)mTk−2m−1y

2m+1

 tk

k!
. (25)
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By (22), (23), (24) and (25), we get

T (C)
n (y) =

[n2 ]∑
m=0

(
n

2m

)
(−1)my2mTn−2m,

and

T (S)
n (y) =

[n−1
2 ]∑

m=0

(
n

2m+ 1

)
(−1)my2m+1Tn−2m−1.

From (13), (14), (22) and (23), we derive the following theorem:

Theorem 2.9. For n ≥ 0, we have

T (C)
n (x, y) =

n∑
k=0

(
n

k

)
T

(C)
k (y)xn−k,

and

T (S)
n (x, y) =

n∑
k=0

(
n

k

)
E

(S)
k (y)xn−k.

We remember that the classical Stirling numbers of the first kind S1(n, k) and
of the second kind S2(n, k) are defined by the relations(see [10])

(x)n =

n∑
k=0

S1(n, k)x
k and xn =

n∑
k=0

S2(n, k)(x)k, (26)

respectively. Here, (x)n = x(x − 1) · · · (x − n + 1) denotes the falling factorial
polynomial of order n. The numbers S2(n,m) also admit a representation in
terms of a generating function

(et − 1)m = m!

∞∑
n=m

S2(n,m)
tn

n!
. (27)

By (13), (27) and by using Cauchy product, we get
∞∑

n=0

T (C)
n (x, y)

tn

n!
=

(
2

e2t + 1

)
(1− (1− e−t))−x cos yt

=

(
2

e2t + 1

) ∞∑
l=0

(
x+ l − 1

l

)
(1− e−t)l cos yt

=

∞∑
l=0

< x >l
(et − 1)l

l!

(
2

e2t + 1

)
e−lt cos yt

=

∞∑
l=0

< x >l

∞∑
n=0

S2(n, l)
tn

n!

∞∑
n=0

T (C)
n (−l, y) t

n

n!

=

∞∑
n=0

( ∞∑
l=0

n∑
i=l

(
n

i

)
S2(i, l)T

(C)
n−i(−l, y) < x >l

)
tn

n!
,

(28)
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where < x >l= x(x + 1) · · · (x + l − 1)(l ≥ 1) denotes the rising factorial poly-
nomial of order l and < x >0= 1. By comparing the coefficients on both sides
of (28), we have the following theorem:

Theorem 2.10. For n ∈ Z+, we have

T (C)
n (x, y) =

∞∑
l=0

n∑
i=l

(
n

i

)
S2(i, l)T

(C)
n−i(−l, y) < x >l,

T (S)
n (x, y) =

∞∑
l=0

n∑
i=l

(
n

i

)
S2(i, l)T

(S)
n−i(−l, y) < x >l .

By (13), (14), (26), (27) and by using Cauchy product, we have

∞∑
n=0

T (C)
n (x, y)

tn

n!
=

(
2

e2t + 1

)
((et − 1) + 1)x cos yt

=
2

e2t + 1
cos yt

∞∑
l=0

(
x

l

)
(et − 1)l

=

∞∑
l=0

(x)l
(et − 1)l

l!

(
2

e2t + 1
cos yt

)

=

∞∑
l=0

(x)l

∞∑
n=0

S2(n, l)
tn

n!

∞∑
n=0

T (C)
n (y)

tn

n!

=

∞∑
n=0

( ∞∑
l=0

n∑
i=l

(
n

i

)
(x)lS2(i, l)T

(C)
n−i(y)

)
tn

n!
.

(29)

By comparing the coefficients on both sides of (29), we have the following theo-
rem:

Theorem 2.11. For n ≥ 0, we have

T (C)
n (x, y) =

∞∑
l=0

n∑
i=l

(
n

i

)
(x)lS2(i, l)T

(C)
n−i(y),

T (S)
n (x, y) =

∞∑
l=0

n∑
i=l

(
n

i

)
(x)lS2(i, l)T

(S)
n−i(y).
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By (3), (13), (22) and by using Cauchy product, we have

∞∑
n=0

T (C)
n (x, y)

tn

n!
=

(
2

e2t + 1

)
ext cos yt

=
(et − 1)r

r!

r!

tr

(
t

et − 1

)r

ext
∞∑

n=0

T (C)
n (y)

tn

n!

=
(et − 1)r

r!

( ∞∑
n=0

B(r)
n (x)

tn

n!

)( ∞∑
n=0

T (C)
n (y)

tn

n!

)
r!

tr

=

∞∑
n=0

(
n∑

l=0

(
n
l

)(
l+r
r

)S2(l + r, r)

n−l∑
i=0

(
n− l

i

)
B

(r)
i (x)T

(C)
n−l−i(y)

)
tn

n!
.

By comparing the coefficients on both sides, we have the following theorem:

Theorem 2.12. For n ≥ 0 and r ∈ N, we have

T (C)
n (x, y) =

n∑
l=0

(
n
l

)(
l+r
r

)S2(l + r, r)

n−l∑
i=0

(
n− l

i

)
B

(r)
i (x)T

(C)
n−l−i(y),

T (S)
n (x, y) =

n∑
l=0

(
n
l

)(
l+r
r

)S2(l + r, r)

n−l∑
i=0

(
n− l

i

)
B

(r)
i (x)T

(S)
n−l−i(y).

By (4), (13) and by using the Cauchy product, we get

∞∑
n=0

T (C)
n (x, y)

tn

n!
=

(
2

e2t + 1

)
ext cos yt

=
(et − u)r

(1− u)r

(
1− u

et − u

)r

ext
(

2

e2t + 1

)
cos yt

=

∞∑
n=0

H(r)
n (u, x)

tn

n!

r∑
i=0

(
r

i

)
eit(−u)r−i 1

(1− u)r

(
2

e2t + 1

)
cos yt

=
1

(1− u)r

r∑
i=0

(
r

i

)
(−u)r−i

∞∑
n=0

H(r)
n (u, x)

tn

n!

∞∑
n=0

T (C)
n (i, y)

tn

n!

=

∞∑
n=0

(
1

(1− u)r

r∑
i=0

(
r

i

)
(−u)r−i

n∑
l=0

(
n

l

)
H

(r)
l (u, x)T

(C)
n−l(i, y)

)
tn

n!
.

By comparing the coefficients on both sides, we have the following theorem:
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Theorem 2.13. For n ≥ 0 and r ∈ N, we have

T (C)
n (x, y) =

1

(1− u)r

r∑
i=0

n∑
l=0

(
r

i

)(
n

l

)
(−u)r−iT

(C)
n−l(i, y)H

(r)
l (u, x),

T (S)
n (x, y) =

1

(1− u)r

r∑
i=0

n∑
l=0

(
r

i

)(
n

l

)
(−u)r−iT

(S)
n−l(i, y)H

(r)
l (u, x).

By Theorem 2.11, Theorem 2.12 and Therem 2.13, we have the following
corollary.

Corollary 2.14. For n ≥ 0 and r ∈ N, we have
∞∑
l=0

n∑
i=l

(
n

i

)
(x)lS2(i, l)T

(C)
n−i(y)

=
1

(1− u)r

r∑
i=0

n∑
l=0

(
r

i

)(
n

l

)
(−u)r−iH

(r)
l (u, x)T

(C)
n−l(i, y)

=

n∑
l=0

(
n
l

)(
l+r
r

)S2(l + r, r)

n−l∑
i=0

(
n− l

i

)
T

(C)
n−l−i(y)B

(r)
i (x).

3. Distribution of zeros of the cosine-tangent and sine-tangent
polynomials

This section aims to demonstrate the benefit of using numerical investigation
to support theoretical prediction and to discover new interesting pattern of the
zeros of the cosine-tangent polynomials T (C)

n (x, y) and sine-tangent polynomials
T

(S)
n (x, y). The sine-tangent polynomials T (S)

n (x, y) can be determined explicitly.
A few of them are
T

(S)
0 (x, y) = 0,

T
(S)
1 (x, y) = y,

T
(S)
2 (x, y) = −2y + 2xy

T
(S)
3 (x, y) = −6xy + 3x2y − y3,

T
(S)
4 (x, y) = 8y − 12x2y + 4x3y + 4y3 − 4xy3,

T
(S)
5 (x, y) = 40xy − 20x3y + 5x4y + 20xy3 − 10x2y3 + y5,

T
(S)
6 (x, y) = −96y + 120x2y − 30x4y + 6x5y − 40y3 + 60x2y3 − 20x3y3 − 6y5

+ 6xy5.

We investigate the beautiful zeros of the sine-tangent polynomials T (S)
n (x, y)

by using a computer. We plot the zeros of the poly-tangent polynomials T (S)
n (x, y)

for n = 50, x = 2, 4, 6, 8 and y ∈ C(Figure 1). In Figure 1(top-left), we choose
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Figure 1. Zeros of T (S)
n (x, y)

n = 50 and x = 2. In Figure 1(top-right), we choose n = 50 and x = 4. In
Figure 1(bottom-left), we choose n = 50 and x = 6. In Figure 1(bottom-right),
we choose n = 50 and x = 8.

Stacks of zeros of T (S)
n (x, y) for 1 ≤ n ≤ 50 from a 3-D structure are pre-

sented(Figure 2). In Figure 2(top-left), we choose x = 2. In Figure 2(top-right),

Figure 2. Stacks of zeros of T (S)
n (x, y) for 1 ≤ n ≤ 50

we choose x = 4. In Figure 2(bottom-left), we choose x = 6. In Figure 2(bottom-
right), we choose x = 8.
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The plot of real zeros of T (S)
n (x, y) for 1 ≤ n ≤ 50 structure are presented(Figure

3). In Figure 3(top-left), we choose x = 2. In Figure 3(top-right), we choose

Figure 3. Stacks of zeros of T (S)
n (x, y) for 1 ≤ n ≤ 50

x = 4. In Figure 3(bottom-left), we choose x = 6. In Figure 3(bottom-right),
we choose x = 8.

Next, we calculated an approximate solution satisfying sine-tangent polyno-
mials T (S)

n (x, y) = 0 for y ∈ R. The results are given in Table 1.

Table 1. Approximate solutions of T (S)
n (2, y) = 0

degree n y

1 0
2 0
3 −4.8990 0, 4.8990
4 −2.4495, 0, 2.4495
5 −8.8288, −1.4327, 0, 1.4327, 8.8288
6 −4.3778, −0.91370, 0, 0.91370, 4.3778
7 −12.692, −2.4474, −0.96366, 0, 0.96366, 2.4474, 12.692
8 −6.2659, 0, 6.2659
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The cosine-tangent polynomials T (C)
n (x, y) can be determined explicitly. A

few of them are
T

(C)
0 (x, y) = 1, T

(C)
1 (x, y) = −1 + x, T

(C)
2 (x, y) = −2x+ x2 − y2

T
(C)
3 (x, y) = 2− 3x2 + x3 + 3y2 − 3xy2,

T
(C)
4 (x, y) = 8x− 4x3 + x4 + 12xy2 − 6x2y2 + y4,

T
(C)
5 (x, y) = −16 + 20x2 − 5x4 + x5 − 20y2 + 30x2y2 − 10x3y2 − 5y4 + 5xy4,

T
(C)
6 (x, y) = −96x+ 40x3 − 6x5 + x6 − 120xy2 + 60x3y2 − 15x4y2 − 30xy4

+ 15x2y4 − y6,

T
(C)
7 (x, y) = 272− 336x2 + 70x4 − 7x6 + x7 + 336y2 − 420x2y2 + 105x4y2

− 21x5y2 + 70y4 − 105x2y4 + 35x3y4 + 7y6 − 7xy6.

We investigate the beautiful zeros of the cosine-tangent polynomials T (C)
n (x, y)

by using a computer. We plot the zeros of the poly-tangent polynomials T (C)
n (x, y)

for n = 50, y = 2, 4, 6, 8 and x ∈ C(Figure 4). In Figure 4(top-left), we choose

-200 -100 0 100 200
-20

-10

0

10

20

Re(x)

Im(x)

-200 -100 0 100 200
-20

-10

0

10

20

Re(x)

Im(x)

-200 -100 0 100 200
-20

-10

0

10

20

Re(x)

Im(x)

-200 -100 0 100 200
-20

-10

0

10

20

Re(x)

Im(x)

Figure 4. Zeros of T (S)
n (x, y)

n = 50 and y = 2. In Figure 4(top-right), we choose n = 50 and y = 4. In
Figure 4(bottom-left), we choose n = 50 and y = 6. In Figure 4(bottom-right),
we choose n = 50 and y = 8.

Stacks of zeros of T (C)
n (x, y) for 1 ≤ n ≤ 50 from a 3-D structure are pre-

sented(Figure 5). In Figure 5(top-left), we choose y = 2. In Figure 5(top-right),
we choose y = 4. In Figure 5(bottom-left), we choose y = 6. In Figure 5(bottom-
right), we choose y = 8.
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Figure 5. Stacks of zeros of T (C)
n (x, y) for 1 ≤ n ≤ 50

The plot of real zeros of T (C)
n (x, y) for 1 ≤ n ≤ 50 structure are pre-

sented(Figure 6). In Figure 6(top-left), we choose y = 2. In Figure 6(top-

Figure 6. Stacks of zeros of T (C)
n (x, y) for 1 ≤ n ≤ 50

right), we choose y = 4. In Figure 6(bottom-left), we choose y = 6. In Figure
6(bottom-right), we choose y = 8.
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Next, we calculated an approximate solution satisfying cosine-tangent poly-
nomials T (C)

n (x, y) = 0 for y = 2, x ∈ R.

Table 2. Approximate solutions of T (C)
n (x, 2) = 0

degree n x

1 1.0000
2 −1.2361, 3.2361
3 −2.8730, 1.0000, 4.8730
4 −4.3307, −0.25841, 2.2584, 6.3307
5 −5.7082, −1.2361, 1.0000, 3.2361, 7.7082
6 −7.0456, −2.0242, −0.059850, 2.0598, 4.0242, 9.0456
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