DOI QR코드

DOI QR Code

Interface Trap Effects on the Output Characteristics of GaN Schottky Barrier MOSFET

GaN Schottky Barrier MOSFET의 출력 전류에 대한 계면 트랩의 영향

  • Park, Byeong-Jun (School of Electronic and Electrical Engineering, Kyungpook National Unversity) ;
  • Kim, Han-Sol (School of Electronic and Electrical Engineering, Kyungpook National Unversity) ;
  • Hahm, Sung-Ho (School of Electronic and Electrical Engineering, Kyungpook National Unversity)
  • 박병준 (경북대학교 전자전기공학부) ;
  • 김한솔 (경북대학교 전자전기공학부) ;
  • 함성호 (경북대학교 전자전기공학부)
  • Received : 2022.07.18
  • Accepted : 2022.07.30
  • Published : 2022.07.31

Abstract

We analyzed the effects of the interface trap on the output characteristics of an inversion mode n-channel GaN Schottky barrier (SB)-MOSFET based on the Nit distribution using TCAD simulation. As interface trap number density (Nit) increased, the threshold voltage increased while the drain current density decreased. Under Nit=5.0×1010 cm-2 condition, the threshold voltage was 3.2 V for VDS=1 V, and the drain current density reduced to 2.4 mA/mm relative to the non-trap condition. Regardless of the Nit distribution type, there was an increase in the subthreshold swing (SS) following an increase in Nit. Under U-shaped Nit distribution, it was confirmed that the SS varied depending on the gate voltage. The interface fixed charge (Qf) caused an shift in the threshold voltage and increased the off-state current collectively with the surface trap. In summary, GaN SB-MOSFET can be a building block for high power UV optoelectronic circuit provided the surface state is significantly reduced.

Keywords

Acknowledgement

본 연구는 대한민국 교육부의 재원으로 BK21 4단계 사업(4199990113966)과 정부의 재원으로 한국연구재단(No. 20201I1A3A04037962)의 지원을 받아 수행된 연구이다.

References

  1. U. K. Mishra, L. Shen, T. E. Kazior, and Y. F. Wu, "GaN based RF power devices and amplifiers," Proc. of IEEE, Vol. 96, No. 2, pp. 287-305, 2008. https://doi.org/10.1109/JPROC.2007.911060
  2. F. Roccaforte, G. Greco, P. Fiorenza, and F. Iucolano, "An Overview of Normally-Off GaN-based High Electron Mobility Transistors," Mater., Vol. 12, No. 10, pp. 1599(1)-1599(18), 2019. https://doi.org/10.3390/ma12101599
  3. R. Sun, J. Lai, W. Chen, and B. Zhang, "GaN Power Integration for High Frequency and High Efficiency Power Applications: A Review," IEEE Access, Vol. 8, pp. 15529-15542, 2020. https://doi.org/10.1109/access.2020.2967027
  4. D. W. Jenkins, J. D. Dow, and M. Tsai, "N vacancies in AlxGa1-xN," J. Appl. Phys, Vol. 72, No. 9, pp. 4130-4133, 1992. https://doi.org/10.1063/1.352220
  5. S. Limpijumnong, and C. G. Van de Walle, "Diffusivity of native defects in GaN," Phys. Rev. B, Vol. 69, No. 3, pp. 035207, 2004. https://doi.org/10.1103/physrevb.69.035207
  6. A. Usui, H. Sunakawa, A.Sakai, and A. Atsushi Yamaguchi, "Thick GaN Epitaxial Growth with Low Dislocation Density," Japanese J Appl. Phys., Vol. 36, No. 7B, pp. 889-902, 1997. https://doi.org/10.1143/JJAP.36.889
  7. M. Ishida, M. Ogawa, K. Orita, O. Imafuji, M. Yuri, T. Sugino, and K. Itoh, "Drastic reduction of threading dislocation in GaN regrown on grooved strip structure," J. Cryst. Growth, Vol. 221, No. 1-4, pp. 345-349, 2000. https://doi.org/10.1016/S0022-0248(00)00711-9
  8. T. Mizutani, H. Yamada, S. Kishimoto, and F. Nakamura, "Normally off AlGaN/GaN high electron mobility transistors with p-InGaN cap layer," J. Appl. Phys., Vol. 113, No. 3, pp. 034502, 2013. https://doi.org/10.1063/1.4775494
  9. J. G. Kim, C. Cho, E. Kim, J. S. Hwang, K. H. Park, and J. H. Lee, "High Breakdown Voltage and Low-Current Dispersion in AlGaN/GaN HEMTs with High-Quality AIN Bufer Layer," IEEE Trans. Electron Devices, Vol. 68, No. 4, pp. 1513-1517, 2021. https://doi.org/10.1109/TED.2021.3057000
  10. D. H. Son, T. Thingujam, Q. Dai, J. G. Kim, S. Cristoloveanu, and J. H. Lee, "Fabrication and characterization of GaN-based nanostructure field effect transistors," Solid-State Electron., Vol. 184, pp. 108079(1)-108079(18), 2021.
  11. F. Yu, D. R mmler, J. Hartmann, L. Caccamo, T. Schimpke, M. Strassburg, A. C. Gad, A. Bakin, H. H. Wehmann, B. Witzigmann, H. S. Wasisto, and A. Waag, "Vertical architecture for enhancement mode power transistors based on GaN nanowires," Appl. Phys. Lett., Vol. 108, No. 21, pp. 213503, 2016. https://doi.org/10.1063/1.4952715
  12. M. Meneghini, E. Fabris, M. Ruzzarin, C. D. Santi, K. Nomoto, Z. hu, W. Li, X. Gao, D. Jena, H. G. Xing, M. Sun, T. Palacios, G. Meneghesso, and E. Zanoni, "Degradation Mechanisms of GaN-based Vertical Devices: A Review," Phys. Stats Solidi, Vol. 217, No. 7, pp. 1900750(1)-1900750(12), 2020.
  13. S.B. Bae, K. W. Kim, Y. S. Lee, J. H. Lee, Y. Bae, and S. Cristoloveanu, "Capacitance-voltage characterization of surface-treated Al2O3/GaN metal-oxide-semiconductor structure," Microelectron. Eng., Vol. 109, pp.10-12, 2013. https://doi.org/10.1016/j.mee.2013.03.108
  14. T. Hossain, D. Wei, and H. Edgar, "Effect of GaN surface treatment on Al2O3/n-GaN MOS capacitors," J. Vacuum Sci.Technol. B, Vol. 33, No. 6, pp. 061201, 2015.
  15. L. M. Terman, "An Investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes," Solid-States Electron., Vol. 5, No. 5, pp. 285-299, 1962. https://doi.org/10.1016/0038-1101(62)90111-9
  16. J. M. Lee, K. M. Chang, S. W. Kim, C. Huh, I. H. Lee, and S. J. Park, "Dry etch damage in n-type GaN and its recovery by treatment with an N2 plasma," J. Appl. Phys., Vol. 87, No. 11, pp. 7667-7670, 2000. https://doi.org/10.1063/1.373438
  17. D. S. Kim, T. H. Kim, C. H. Won, H. S. Kang, K. W. Kim, K. S. Im, Y. S. Lee, S. H. Hahm, J. H. Lee, J. H. Lee, J. B. Ha, Y. Bae, and S. Cristoloveanu, "Performance enhancement of GaN SB-MOSFET on Si substrate using two-step growth method," Microelectron. Eng., Vol. 88, No. 7, pp. 1221-1224, 2011. https://doi.org/10.1016/j.mee.2011.03.119
  18. Y. Zhang, H. Y. Wong, M. Sun, S. Joglekar, L. Yu, N. A. Braga, R. V. Mickevicius, and T. Palacios, "Design Space and Origin of Off-State Leakage in GaN Vertical Power Diodes," IEEE Int. Electron Devices Meeting, pp. 889-902, 2015.
  19. Y. H. Chen, K. Zhang, M. Y. Cao, S. L. Zhao, J. C. Zhang, X. H. Ma and Y. Hao, "Study of surface leakage current of AlGaN/GaN high electron mobility transistors," Appl. Phys. Lett., Vol. 104, No. 15, pp. 153509, 2014. https://doi.org/10.1063/1.4871736
  20. P. V. Gray, and D. M. Brown, "Density of SiO2Si Interface States," Appl. Phys. Lett., Vol. 8, No. 2, pp. 31-33, 1966. https://doi.org/10.1063/1.1754468
  21. D. M. Fleetwood, "Long-term annealing study of midgap interface-trap charge neutrality," Appl. Phys. Lett., Vol. 60, No. 23, pp. 2883-2885, 1992. https://doi.org/10.1063/1.106807
  22. Silvaco Atlas User Manual, Santa Clara, California, 2019.
  23. J. Song, S. W. Han, H. Luo, J. Rumsey, J. H. Leach, and R. Chu, "Study of interface trap density of AlOxNy/GaN MOS structures," Appl. Phys. Lett., Vol. 119, No. 12, pp. 122105, 2021. https://doi.org/10.1063/5.0062581
  24. H. B. Lee, H. I. Cho, H. S. An, Y. H. Bae, M. B. Lee, J. H. Lee, and S. H. Hahm, "A Normally Off GaN n-MOSFET With Schottky-Barrier Source and Drain on a Si-Auto-Doped p-GaN/Si," IEEE Electron. Device Lett., Vol. 27, No. 2, pp. 81-83, 2006. https://doi.org/10.1109/LED.2005.862675