DOI QR코드

DOI QR Code

Role of Nuclear Factor Erythroid 2-Related Factor 2 in Chronic Obstructive Pulmonary Disease

  • Ban, Woo Ho (Division of Pulmonary and Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Rhee, Chin Kook (Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
  • Received : 2021.11.03
  • Accepted : 2022.03.01
  • Published : 2022.07.31

Abstract

Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation due to chronic airway inflammation and destruction of the alveolar structure from persistent exposure to oxidative stress. The body has various antioxidant mechanisms for efficiently coping with such oxidative stress. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) is a representative system. Dysregulation of the Nrf2-ARE pathway is responsible for the development and promotion of COPD. Furthermore, COPD severity is also closely related to this pathway. There has been a clinical impetus to use Nrf2 for diagnostic and therapeutic purposes. Therefore, in this work, we systematically reviewed the clinical significance of Nrf2 in COPD patients, and discuss the value of Nrf2 as a potential COPD biomarker.

Keywords

References

  1. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med 2017;195:557-82. https://doi.org/10.1164/rccm.201701-0218PP
  2. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2095-128. https://doi.org/10.1016/S0140-6736(12)61728-0
  3. Fabbri LM, Luppi F, Beghe B, Rabe KF. Complex chronic comorbidities of COPD. Eur Respir J 2008;31:204-12. https://doi.org/10.1183/09031936.00114307
  4. Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J 2009;33:1165-85. https://doi.org/10.1183/09031936.00128008
  5. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2016;138:16-27. https://doi.org/10.1016/j.jaci.2016.05.011
  6. Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 2014;224:164-75. https://doi.org/10.1016/j.cbi.2014.10.016
  7. Finkel T. Signal transduction by reactive oxygen species. J Cell Biol 2011;194:7-15. https://doi.org/10.1083/jcb.201102095
  8. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 2010;48:749-62. https://doi.org/10.1016/j.freeradbiomed.2009.12.022
  9. Moodie FM, Marwick JA, Anderson CS, Szulakowski P, Biswas SK, Bauter MR, et al. Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells. FASEB J 2004;18:1897-9. https://doi.org/10.1096/fj.04-1506fje
  10. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013;53:401-26. https://doi.org/10.1146/annurev-pharmtox-011112-140320
  11. Boutten A, Goven D, Artaud-Macari E, Boczkowski J, Bonay M. NRF2 targeting: a promising therapeutic strategy in chronic obstructive pulmonary disease. Trends Mol Med 2011;17:363-71. https://doi.org/10.1016/j.molmed.2011.02.006
  12. Rangasamy T, Misra V, Zhen L, Tankersley CG, Tuder RM, Biswal S. Cigarette smoke-induced emphysema in A/J mice is associated with pulmonary oxidative stress, apoptosis of lung cells, and global alterations in gene expression. Am J Physiol Lung Cell Mol Physiol 2009;296:L888-900.
  13. Bosken CH, Wiggs BR, Pare PD, Hogg JC. Small airway dimensions in smokers with obstruction to airflow. Am Rev Respir Dis 1990;142:563-70. https://doi.org/10.1164/ajrccm/142.3.563
  14. Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol 2009;4:435-59. https://doi.org/10.1146/annurev.pathol.4.110807.092145
  15. Iizuka T, Ishii Y, Itoh K, Kiwamoto T, Kimura T, Matsuno Y, et al. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells 2005;10:1113-25. https://doi.org/10.1111/j.1365-2443.2005.00905.x
  16. Ishii Y, Itoh K, Morishima Y, Kimura T, Kiwamoto T, Iizuka T, et al. Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema. J Immunol 2005;175:6968-75. https://doi.org/10.4049/jimmunol.175.10.6968
  17. Sussan TE, Rangasamy T, Blake DJ, Malhotra D, El-Haddad H, Bedja D, et al. Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci U S A 2009;106:250-5. https://doi.org/10.1073/pnas.0804333106
  18. Goven D, Boutten A, Lecon-Malas V, Marchal-Somme J, Amara N, Crestani B, et al. Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema. Thorax 2008;63: 916-24. https://doi.org/10.1136/thx.2007.091181
  19. Suzuki M, Betsuyaku T, Ito Y, Nagai K, Nasuhara Y, Kaga K, et al. Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2008;39:673-82. https://doi.org/10.1165/rcmb.2007-0424OC
  20. Donaldson GC, Seemungal TA, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002;57:847-52. https://doi.org/10.1136/thorax.57.10.847
  21. Suissa S, Dell'Aniello S, Ernst P. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax 2012;67:957-63. https://doi.org/10.1136/thoraxjnl-2011-201518
  22. Wedzicha JA, Seemungal TA. COPD exacerbations: defining their cause and prevention. Lancet 2007;370:786-96. https://doi.org/10.1016/S0140-6736(07)61382-8
  23. Berenson CS, Kruzel RL, Eberhardt E, Sethi S. Phagocytic dysfunction of human alveolar macrophages and severity of chronic obstructive pulmonary disease. J Infect Dis 2013;208:2036-45. https://doi.org/10.1093/infdis/jit400
  24. Harvey CJ, Thimmulappa RK, Sethi S, Kong X, Yarmus L, Brown RH, et al. Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model. Sci Transl Med 2011;3:78ra32. https://doi.org/10.1126/scitranslmed.3002042
  25. Cho HY, Imani F, Miller-DeGraff L, Walters D, Melendi GA, Yamamoto M, et al. Antiviral activity of Nrf2 in a murine model of respiratory syncytial virus disease. Am J Respir Crit Care Med 2009;179:138-50. https://doi.org/10.1164/rccm.200804-535OC
  26. Foronjy RF, Dabo AJ, Taggart CC, Weldon S, Geraghty P. Respiratory syncytial virus infections enhance cigarette smoke induced COPD in mice. PLoS One 2014;9:e90567. https://doi.org/10.1371/journal.pone.0090567
  27. Wise RA, Holbrook JT, Criner G, Sethi S, Rayapudi S, Sudini KR, et al. Lack of effect of oral sulforaphane administration on Nrf2 expression in COPD: a randomized, double-blind, placebo controlled trial. PLoS One 2016;11:e0163716. https://doi.org/10.1371/journal.pone.0163716
  28. Marcoa R, Rodrigues DM, Dias M, Ladeira I, Vaz AP, Lima R, et al. Classification of chronic obstructive pulmonary disease (COPD) according to the new Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017: Comparison with GOLD 2011. COPD 2018;15:21-6. https://doi.org/10.1080/15412555.2017.1394285
  29. Min T, Bodas M, Mazur S, Vij N. Critical role of proteostasis-imbalance in pathogenesis of COPD and severe emphysema. J Mol Med (Berl) 2011;89:577-93. https://doi.org/10.1007/s00109-011-0732-8
  30. Mirza S, Clay RD, Koslow MA, Scanlon PD. COPD guidelines: a review of the 2018 GOLD report. Mayo Clin Proc 2018;93:1488-502. https://doi.org/10.1016/j.mayocp.2018.05.026
  31. Sun XJ, Li ZH, Zhang Y, Zhou G, Zhang JQ, Deng JM, et al. Combination of erythromycin and dexamethasone improves corticosteroid sensitivity induced by CSE through inhibiting PI3K-delta/Akt pathway and increasing GR expression. Am J Physiol Lung Cell Mol Physiol 2015;309:L139-46. https://doi.org/10.1152/ajplung.00292.2014
  32. An TJ, Rhee CK, Kim JH, Lee YR, Chon JY, Park CK, et al. Effects of macrolide and corticosteroid in neutrophilic asthma mouse model. Tuberc Respir Dis 2018;81:80-7. https://doi.org/10.4046/trd.2017.0108
  33. Yamamoto T, Yoh K, Kobayashi A, Ishii Y, Kure S, Koyama A, et al. Identification of polymorphisms in the promoter region of the human NRF2 gene. Biochem Biophys Res Commun 2004;321:72-9. https://doi.org/10.1016/j.bbrc.2004.06.112
  34. Masuko H, Sakamoto T, Kaneko Y, Iijima H, Naito T, Noguchi E, et al. An interaction between Nrf2 polymorphisms and smoking status affects annual decline in FEV1: a longitudinal retrospective cohort study. BMC Med Genet 2011;12:97. https://doi.org/10.1186/1471-2350-12-97
  35. Yamada K, Asai K, Nagayasu F, Sato K, Ijiri N, Yoshii N, et al. Impaired nuclear factor erythroid 2-related factor 2 expression increases apoptosis of airway epithelial cells in patients with chronic obstructive pulmonary disease due to cigarette smoking. BMC Pulm Med 2016;16:27. https://doi.org/10.1186/s12890-016-0189-1
  36. Fratta Pasini AM, Ferrari M, Stranieri C, Vallerio P, Mozzini C, Garbin U, et al. Nrf2 expression is increased in peripheral blood mononuclear cells derived from mild-moderate ex-smoker COPD patients with persistent oxidative stress. Int J Chron Obstruct Pulmon Dis 2016;11:1733-43. https://doi.org/10.2147/COPD.S102218
  37. Ban WH, Kang HH, Kim IK, Ha JH, Joo H, Lee JM, et al. Clinical significance of nuclear factor erythroid 2-related factor 2 in patients with chronic obstructive pulmonary disease. Korean J Intern Med 2018;33:745-52. https://doi.org/10.3904/kjim.2017.030