DOI QR코드

DOI QR Code

Bactericidal Efficacy of Oxidized Silver against Biofilms Formed by Curtobacterium flaccumfaciens pv. flaccumfaciens

  • Harding, Michael W. (Alberta Agriculture, Forestry and Rural Economic Development, Crop Diversification Centre South) ;
  • Marques, Lyriam L.R. (Hydroqual Laboratories Ltd.) ;
  • Allan, Nick (Chinook Contract Research) ;
  • Olson, Merle E. (Chinook Contract Research) ;
  • Buziak, Brenton (Innovotech Inc.) ;
  • Nadworny, Patricia (Innovotech Inc.) ;
  • Omar, Amin (Innovotech Inc.) ;
  • Howard, Ronald J. (RJH Ag Research Solutions) ;
  • Feng, Jie (Alberta Agriculture, Forestry and Rural Economic Development, Alberta Plant Health Lab)
  • Received : 2022.04.10
  • Accepted : 2022.06.13
  • Published : 2022.08.01

Abstract

Bacterial wilt is a re-emerging disease on dry bean and can affect many other crop species within the Fabaceae. The causal agent, Curtobacterium flaccumfaciens pv. flaccumfaciens (CFF), is a small, Gram-positive, rod-shaped bacterium that is seed-transmitted. Infections in the host become systemic, leading to wilting and economic loss. Clean seed programs and bactericidal seed treatments are two critical management tools. This study characterizes the efficacies of five bactericidal chemicals against CFF. It was hypothesized that this bacterium was capable of forming biofilms, and that the cells within biofilms would be more tolerant to bactericidal treatments. The minimum biocide eradication concentration assay protocol was used to grow CFF biofilms, expose the biofilms to bactericides, and enumerate survivors compared to a non-treated control (water). Streptomycin and oxysilver bisulfate had EC95 values at the lowest concentrations and are likely the best candidates for seed treatment products for controlling seed-borne bacterial wilt of bean. The results showed that CFF formed biofilms during at least two phases of the bacterial wilt disease cycle, and the biofilms were much more difficult to eradicate than their planktonic counterparts. Overall, biofilm formation by CFF is an important part of the bacterial wilt disease cycle in dry edible bean and antibiofilm bactericides such as streptomycin and oxysilver bisulfate may be best suited for use in disease management.

Keywords

Acknowledgement

This research was supported financially by an Alberta Ingenuity Industrial Associateship, Innovotech Inc., and Alberta Agriculture and Forestry. Thanks to Mrs. Liz Middlemiss for technical assistance with SEM imaging.

References

  1. AAT Bioquest. 2019. Quest graph EC50 calculator. URL https://www.aatbio.com/tools/ec50-calculator [10 April 2022].
  2. Agarkova, I. V., Lambrecht, P. A., Vidaver, A. K. and Harveson, R. M. 2012. Genetic diversity among Curtobacterium flaccumfaciens pv. flaccumfaciens populations in the American high plains. Can. J. Microbiol. 58:788-801. https://doi.org/10.1139/w2012-052
  3. Anwar, H., Dasgupta, M. K. and Costerton, J. W. 1990. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob. Agents Chemother. 34:2043-2046. https://doi.org/10.1128/AAC.34.11.2043
  4. ASTM International. 2017. ASTM E2799-17: standard test method for testing disinfectant efficacy against Pseudomonas aeruginosa biofilm using the MBEC assay. URL https://www.astm.org/e2799-17.html [10 April 2022].
  5. Bigger, J. W. 1944. The bactericidal action of penicillin on Staphylococcus pyogenes. Ir. J. Med. Sci. 19:553-568. https://doi.org/10.1007/BF02948386
  6. Botti-Marino, M. 2017. Epiphytic survival and biofilm formation of the Goss's wilt pathogen Clavibacter michiganensis subsp. nebraskensis. Ph.D. thesis. Michigan State University, East Lansing, MI, USA.
  7. Bozzola, J. J. and Russell, L. D. 1992. Electron microscopy: principles and techniques for biologists. Jones and Bartlett Publishers, Boston, MA, USA. 670 pp.
  8. Bragg, P. D. and Rainnie, D. J. 1974. The effect of silver ions on the respiratory chain of Escherichia coli. Can. J. Microbiol. 20:883-889. https://doi.org/10.1139/m74-135
  9. Bridier, A., Briandet, R., Thomas, V. and Dubois-Brissonnet, F. 2011. Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27:1017-1032. https://doi.org/10.1080/08927014.2011.626899
  10. Castiblanco, L. F. and Sundin, G. W. 2016. New insights on molecular regulation of biofilm formation in plant-associated bacteria. J. Integr. Plant Biol. 58:362-372. https://doi.org/10.1111/jipb.12428
  11. Conner, R. L., Balasubramanian, P., Erickson, R. S., Huang, H. C. and Mundel, H. H. 2008. Bacterial wilt resistance in kidney beans. Can. J. Plant Sci. 88:1109-1113. https://doi.org/10.4141/CJPS08074
  12. De Beer, D., Stoodley, P. and Lewandowski, Z. 1994. Liquid flow in heterogeneous biofilms. Biotechnol. Bioeng. 44:636-641. https://doi.org/10.1002/bit.260440510
  13. De Beer, D., Stoodley, P. and Lewandowski, Z. 1996. Liquid flow and mass transport in heterogeneous biofilms. Water Res. 30:2761-2765. https://doi.org/10.1016/S0043-1354(96)00141-8
  14. Demirci, H., Murphy, F., Murphy, E., Gregory, S. T., Dahlberg, A. E. and Jogl, G. 2013. A structural basis for streptomycin-induced misreading of the genetic code. Nat. Commun. 4:1355. https://doi.org/10.1038/ncomms2346
  15. Gilbert, P. and McBain, A. J. 2001. Biofilms: their impact on heath and their recalcitrance toward biocides. Am. J. Infect. Control 29:252-255. https://doi.org/10.1067/mic.2001.115673
  16. Grass, G., Rensing, C. and Solioz, M. 2011. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 77:1541-1547. https://doi.org/10.1128/AEM.02766-10
  17. Harding, M. W. and Daniels, G. C. 2017. In vitro assessment of biofilm formation by soil- and plant-associated microorganisms. In: Biofilms in plant and soil health, eds. by I. Ahmad and F. M. Husain, pp. 253-273. John Wiley & Sons, Ltd., West Sussex, UK.
  18. Harding, M. W., Howard, R. J., Daniels, G. D., Mobbs, S. L., Lisowski, S. L. I., Allan, N. D., Omar, A. and Olson, M. E. 2011. A multi-well plate method for rapid growth, characterization and biocide sensitivity testing of microbial biofilms on various surface materials. In: Science against microbial pathogens: communicating current research and technological advances, ed. by A. Mendez-Vilas, pp. 872-877. Formatex Research Centre, Badajoz, Spain.
  19. Harding, M. W., Marques, L. L. R., Howard, R. J. and Olson, M. E. 2010. Biofilm morphologies of plant pathogenic fungi. Am. J. Plant Sci. Biotechnol. 4:43-47.
  20. Harding, M., Nadworny, P., Buziak, B., Omar, A., Daniels, G. and Feng, J. 2019. Improved methods for treatment of phytopathogenic biofilms: metallic compounds as anti-bacterial coatings and fungicide tank-mix partners. Molecules 24:2312. https://doi.org/10.3390/molecules24122312
  21. Harrison, J. J., Stremick, C. A., Turner, R. J., Allan, N. D., Olson, M. E. and Ceri, H. 2010. Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nat. Protoc. 5:1236-1254. https://doi.org/10.1038/nprot.2010.71
  22. Harveson, R. M. and Schwartz, H. F. 2007. Bacterial diseases of dry edible beans in the Central High Plains. Plant Health Prog. 8:35. https://doi.org/10.1094/php-2007-0125-01-dg
  23. Harveson, R. M., Schwartz, H. F., Urrea, C. A. and Yonts, C. D. 2015. Bacterial wilt of dry-edible beans in the central high plains of the US: past, present, and future. Plant Dis. 99:1665-1677. https://doi.org/10.1094/PDIS-03-15-0299-FE
  24. Howard, R. J., Harding, M. W., Daniels, G. C., Mobbs, S. L., Lisowski, S. L. I. and De Boer, S. H. 2015. Efficacy of agricultural disinfectants on biofilms of the bacterial ring rot pathogen, Clavibacter michiganensis subsp. sepedonicus. Can. J. Plant Pathol. 37:273-284. https://doi.org/10.1080/07060661.2015.1078413
  25. Hsieh, T. F., Huang, H. C., Mundel, H.-H., Conner, R. L., Erickson, R. S. and Balasubramanian, P. M. 2005. Resistance of common bean (Phaseolus vulgaris) to bacterial wilt caused by Curtobacterium flaccumfaciens pv. flaccumfaciens. J. Phytopathol. 153:245-249. https://doi.org/10.1111/j.1439-0434.2005.00963.x
  26. Huang, H. C., Erickson, R. S., Balasubramanian, P. M., Hsieh, T. F. and Conner, R. L. 2009. Resurgence of bacterial wilt of common bean in North America. Can. J. Plant Pathol. 31:290-300. https://doi.org/10.1080/07060660909507603
  27. Huang, H. C., Erickson, R. S. and Hsieh, T. F. 2007. Control of bacterial wilt of bean (Curtobacterium flaccumfaciens pv. flaccumfaciens) by seed treatment with Rhizobium leguminosarum. Crop Prot. 26:1055-1061. https://doi.org/10.1016/j.cropro.2006.09.018
  28. Koczan, J. M., McGrath, M. J., Zhao, Y. and Sundin, G. W. 2009. Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. Phytopathology 99:1237-1244. https://doi.org/10.1094/PHYTO-99-11-1237
  29. Koutsoudis, M. D., Tsaltas, D., Minogue, T. D. and von Bodman, S. B. 2006. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc. Natl. Acad. Sci. U. S. A. 103:5983-5988. https://doi.org/10.1073/pnas.0509860103
  30. Lewis, K. 2001. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45:999-1007. https://doi.org/10.1128/AAC.45.4.999-1007.2001
  31. Marques, L. L. R., Ceri, H., Manfio, G. P., Reid, D. M. and Olson, M. E. 2002. Characterization of biofilm formation by Xylella fastidiosa in vitro. Plant Dis. 86:633-638. https://doi.org/10.1094/pdis.2002.86.6.633
  32. Mathews, S., Hans, M., Mucklich, F. and Solioz, M. 2013. Contact killing of bacteria on copper is suppressed if bacterialmetal contact is prevented and is induced on iron by copper ions. Appl. Environ. Microbiol. 79:2605-2611. https://doi.org/10.1128/AEM.03608-12
  33. Miyaue, S., Suzuki, E., Komiyama, Y., Kondo, Y., Morikawa, M. and Maeda, S. 2018. Bacterial memory of persisters: bacterial persister cells can retain their phenotype for days or weeks after withdrawal from colony-biofilm culture. Front. Microbiol. 9:1396. https://doi.org/10.3389/fmicb.2018.01396
  34. Modak, S. M. and Fox, C. L. Jr. 1973. Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa. Biochem. Pharmacol. 22:2391-2404. https://doi.org/10.1016/0006-2952(73)90341-9
  35. Mori, Y., Inoue, K., Ikeda, K., Nakayashiki, H., Higashimoto, C., Ohnishi, K., Kiba, A. and Hikichi, Y. 2016. The vascular plant-pathogenic bacterium Ralstonia solanacearum produces biofilms required for its virulence on the surfaces of tomato cells adjacent to intercellular spaces. Mol. Plant Pathol. 17:890-902. https://doi.org/10.1111/mpp.12335
  36. Nadworny, P., Omotoso, O. and Zheng, Z. 2015. Comparison of oxysilver nitrate and oxysilver bisulfate, Part I: Synthesis and physicochemical properties. Polyhedron 99:204-215. https://doi.org/10.1016/j.poly.2015.07.038
  37. Osdaghi, E., Taghavi, S. M., Hamzehzarghani, H., Fazliarab, A., Harveson, R. M. and Lamichhane, J. R. 2016. Occurrence and characterization of a new red-pigmented variant of Curtobacterium flaccumfaciens, the causal agent of bacterial wilt of edible dry beans in Iran. Eur. J. Plant Pathol. 146:129-145. https://doi.org/10.1007/s10658-016-0900-3
  38. Osdaghi, E., Young, A. J. and Harveson, R. M. 2020. Bacterial wilt of dry beans caused by Curtobacterium flaccumfaciens pv. flaccumfaciens: a new threat from an old enemy. Mol. Plant Pathol. 21:605-621. https://doi.org/10.1111/mpp.12926
  39. Padmavathi, A. R., Bakkiyaraj, D. and Pandian, S. K. 2017. Biochemical and molecular mechanisms in biofilm formation of plant associated bacteria. In: Biofilms in plant and soil health, eds. by I. Ahmad and F. M. Husain, pp. 195-214. John Wiley & Sons, Ltd., West Sussex, UK.
  40. Picioreanu, C., van Loosdrecht, M. C. M. and Heijnen, J. J. 2000. Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol. Bioeng. 69:504-515. https://doi.org/10.1002/1097-0290(20000905)69:5<504::AID-BIT5>3.0.CO;2-S
  41. Ramey, B. E., Koutsoudis, M., von Bodman, S. B. and Fuqua, C. 2004. Biofilm formation in plant-microbe associations. Curr. Opin. Microbiol. 7:602-609. https://doi.org/10.1016/j.mib.2004.10.014
  42. Reichhardt, C. and Parsek, M. R. 2019. Confocal laser scanning microscopy for analysis of Pseudomonas aeruginosa biofilm architecture and matrix localization. Front Microbiol. 10:677. https://doi.org/10.3389/fmicb.2019.00677
  43. Russell, A. D. and Hugo, W. B. 1994. Antimicrobial activity and action of silver. Prog. Med. Chem. 31:351-370. https://doi.org/10.1016/S0079-6468(08)70024-9
  44. Slawson, R. M., Trevors, J. T. and Lee, H. 1992. Silver accumulation and resistance in Pseudomonas stutzeri. Arch. Microbiol. 158:398-404. https://doi.org/10.1007/BF00276299
  45. Stewart, P. S. 2015. Antimicrobial tolerance in biofilms. Microbiol. Spectr. 3:10.1128/microbiolspec.MB-0010-2014.
  46. Stewart, P. S., White, B., Boegli, L., Hamerly, T., Williamson, K. S., Franklin, M. J., Bothner, B., James, G. A., Fisher, S., Vital-Lopez, F. G. and Wallqvist, A. 2019. Conceptual model of biofilm antibiotic tolerance that integrates phenomena of diffusion, metabolism, gene expression, and physiology. J. Bacteriol. 22:e00307-19.
  47. Tarbah, F. and Goodman, R. N. 1987. Systemic spread of Agrobacterium tumefaciens biovar 3 in the vascular system of grapes. Phytopathology 77:915-920. https://doi.org/10.1094/Phyto-77-915
  48. Urrea, C. A., Harveson, R. M., Nielsen, K. and Venegas, J. 2008. Identification of sources of bacterial wilt resistance in dry beans (Phaseolus vulgaris L.). Ann. Rep. Bean Improv. Coop. 51:58-59.
  49. Velmourougane, K., Prasanna, R. and Saxena, A. K. 2017. Agriculturally important microbial biofilms: present status and future prospects. J. Basic Microbiol. 57:548-573. https://doi.org/10.1002/jobm.201700046
  50. Villa, F., Cappitelli, F., Cortesi, P. and Kunova, A. 2017. Fungal biofilms: targets for the development of novel strategies in plant disease management. Front Microbiol. 8:654.
  51. Wilking J. N., Zaburdaev, N., De Volder, M., Losick, R., Brenner, M. P. and Weitz, D. A. 2002. Liquid transport facilitated by channels in Bacillus subtilis biofilms. Proc. Natl. Acad. Sci. U. S. A. 110:848-852.
  52. Wilking, J. N., Zaburdaev, V., De Volder, M., Losick, R., Brenner, M. P. and Weitz, D. A. 2013. Liquid transport facilitated by channels in Bacillus subtilis biofilms. Proc. Natl. Acad. Sci. U. S. A. 110:848-852. https://doi.org/10.1073/pnas.1216376110
  53. Wood, T. K. 2017. Strategies for combating persister cell and biofilm infections. Microb. Biotechnol. 10:1054-1056. https://doi.org/10.1111/1751-7915.12774
  54. Yan, J. and Bassler, B. L. 2019. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe. 26:15-21. https://doi.org/10.1016/j.chom.2019.06.002