DOI QR코드

DOI QR Code

Identification of Endogenous Genes for Normalizing Titer Variation of Citrus Tristeza Virus in Aphids at Different Post-acquisition Feeding Times

  • Wang, Hongsu (Citrus Research Institute, Southwest University) ;
  • Chen, Qi (Citrus Research Institute, Southwest University) ;
  • Liu, Luqin (Citrus Research Institute, Southwest University) ;
  • Zhou, Yan (Citrus Research Institute, Southwest University) ;
  • Wang, Huanhuan (Citrus Research Institute, Southwest University) ;
  • Li, Zhongan (Citrus Research Institute, Southwest University) ;
  • Liu, Jinxiang (Citrus Research Institute, Southwest University)
  • Received : 2022.01.28
  • Accepted : 2022.06.06
  • Published : 2022.08.01

Abstract

Citrus tristeza virus (CTV) is efficiently transmitted in a semi-persistent manner by the brown citrus aphid (Toxoptera citricida (Kirkaldy)). Currently, the most sensitive method for detecting plant viruses in insect vectors is reverse-transcription quantitative polymerase chain reaction (RT-qPCR). In this study, the elongation factor-1 alpha (EF-1α) gene and acidic p0 ribosomal protein (RPAP0) gene were confirmed to be suitable reference genes for RT-qPCR normalization in viruliferous T. citricida aphids using the geNorm, NormFinder, and BestKeeper tools. Then the relative CTV titer in aphids (T. citricida) at different post-acquisition feeding times on healthy plants was quantified by RT-qPCR using EF-1α and RPAP0 as reference genes. The relative CTV titer retained in the aphids gradually decreased with increasing feeding time. During the first 0.5 h of feeding time on healthy plants, the remaining CTV titer in aphids showed about 80% rapid loss for the highly transmissible isolate CT11A and 40% loss for the poorly transmissible isolate CTLJ. The relative CTV titer in aphids during more than 12 h post-acquisition times for CT11A was significantly lower than at the other feeding times, which is similar to the trend found for CTLJ. To our knowledge, this is the first report about the relative titer variation of CTV remaining in T. citricida at different post-acquisition feeding times on healthy plants.

Keywords

Acknowledgement

This study was supported by the National Natural Science Foundation of China (Grant No. 31972237), the National Key R&D Program of China (Grant No. 2021YFD1400800), and the Fundamental Research Funds for the Central Universities (Grant No. XDJK2019B017).

References

  1. Andersen, C. L., Jensen, J. L. and Orntoft, T. F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64:5245-5250. https://doi.org/10.1158/0008-5472.CAN-04-0496
  2. Bar-Joseph, M., Marcus, R. and Lee, R. F. 1989. The continuous challenge of citrus tristeza virus control. Ann. Rev. Phytopathol. 27:291-316. https://doi.org/10.1146/annurev.py.27.090189.001451
  3. Barzegar, A., Rahimian, H. and Sohi, H. H. 2010. Comparison of the minor coat protein gene sequences of aphid-transmissible and -nontransmissible isolates of Citrus tristeza virus. J. Gen. Plant Pathol. 76:143-151. https://doi.org/10.1007/s10327-009-0216-7
  4. Bertin, S., Pacifico, D., Cavalieri, V., Marzachi, C. and Bosco, D. 2016. Transmission of grapevine virus A and grapevine leafroll-associated viruses 1 and 3 by Planococcus ficus and Planococcus citri fed on mixed-infected plants. Ann. Appl. Biol. 169:53-63. https://doi.org/10.1111/aab.12279
  5. Bertolini, E., Moreno, A., Capote, N., Olmos, A., de Luis, A., Vidal, E., Perez-Panades, J. and Cambra, M. 2008. Quantitative detection of Citrus tristeza virus in plant tissues and single aphids by real-time RT-PCR. Eur. J. Plant Pathol. 120:177-188. https://doi.org/10.1007/s10658-007-9206-9
  6. Betancourt, M., Fereres, A., Fraile, A. and Garcia-Arenal, F. 2008. Estimation of the effective number of founders that initiate an infection after aphid transmission of a multipartite plant virus. J. Virol. 82:12416-12421. https://doi.org/10.1128/JVI.01542-08
  7. Blanc, S., Ammar, E. D., Garcia-Lampasona, S., Dolja, V. V., Llave, C., Baker, J. and Pirone, T. P. 1998. Mutations in the potyvirus helper component protein: effects on interactions with virions and aphid stylets. J. Gen. Virol. 79:3119-3122. https://doi.org/10.1099/0022-1317-79-12-3119
  8. Brault, V., van den Heuvel, J. F., Verbeek, M., Ziegler-Graff, V., Reutenauer, A., Herrbach, E., Garaud, J. C., Guilley, H., Richards, K. and Jonard, G. 1995. Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO J. 14:650-659. https://doi.org/10.1002/j.1460-2075.1995.tb07043.x
  9. Broadbent, P., Brlansky, R. H. and Indsto, J. 1996. Biological characterization of Australian isolates of citrus tristeza virus and separation of subisolates by single aphid transmissions. Plant Dis. 80:329-333. https://doi.org/10.1094/PD-80-0329
  10. Chen, A. Y. S., Walker, G. P., Carter, D. and Ng, J. C. K. 2011. A virus capsid component mediates virion retention and transmission by its insect vector. Proc. Natl. Acad. Sci. U. S. A. 108:16777-16782. https://doi.org/10.1073/pnas.1109384108
  11. Costa, A. S. and Grant, T. J. 1951. Studies on transmission of the tristeza virus by the vector, Aphis citricidus. Phytopathology 41:105-113.
  12. Gutierrez, L., Mauriat, M., Pelloux, J., Bellini, C. and Van Wuytswinkel, O. 2008. Towards a systematic validation of references in real-time RT-PCR. Plant Cell 20:1734-1735. https://doi.org/10.1105/tpc.108.059774
  13. Harper, S. J., Killiny, N., Tatineni, S., Gowda, S., Cowell, S. J., Shilts, T. and Dawson, W. O. 2016. Sequence variation in two genes determines the efficacy of transmission of citrus tristeza virus by the brown citrus aphid. Arch. Virol. 161:3555-3559. https://doi.org/10.1007/s00705-016-3070-x
  14. Hilf, M. E., Mavrodieva, V. A. and Garnsey, S. M. 2005. Genetic marker analysis of a global collection of isolates of Citrus tristeza virus: characterization and distribution of CTV genotypes and association with symptoms. Phytopathology 95:909-917. https://doi.org/10.1094/PHYTO-95-0909
  15. Hunter, W. B., Dang, P. M., Bausher, M. G., Chaparro, J. X., McKendree, W., Shatters, R. G., McKenzie, C. L. and Sinisterra, X. H. 2003. Aphid biology: expressed genes from alate Toxoptera citricida, the brown citrus aphid. J. Insect Sci. 3:23.
  16. Jiang, Y. X., de Blas, C., Barrios, L. and Fereres, A. 2000. Correlation between whitefly (Homoptera: Aleyrodidae) feeding behavior and transmission of tomato yellow leaf curl virus. Ann. Entomol. Soc. Am. 93:573-579. https://doi.org/10.1603/0013-8746(2000)093[0573:CBWHAF]2.0.CO;2
  17. Killiny, N., Harper, S. J., Alfaress, S., El Mohtar, C. and Dawson, W. O. 2016. Minor coat and heat-shock proteins are involved in binding of citrus tristeza virus to the foregut of its aphid vector, Toxoptera citricida. Appl. Environ. Microbiol. 82:6294-6302. https://doi.org/10.1128/AEM.01914-16
  18. Kim, H.-K. and Yun, S.-H. 2011. Evaluation of potential reference genes for quantitative RT-PCR analysis in Fusarium graminearum under different culture conditions. Plant Pathol. J. 27:301-309. https://doi.org/10.5423/PPJ.2011.27.4.301
  19. Li, R., Xie, W., Wang, S., Wu, Q., Yang, N.,Yang, X., Pan, H., Zhou, X., Bai, L. and Xu, B. 2013. Reference gene selection for qRT-PCR analysis in the sweet potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE 8:e53006. https://doi.org/10.1371/journal.pone.0053006
  20. Liang, P., Guo, Y., Zhou, X. and Gao, X. 2014. Expression profiling in Bemisia tabaci under insecticide treatment: indicating the necessity for custom reference gene selection. PLoS ONE 9:e87514. https://doi.org/10.1371/journal.pone.0087514
  21. Limburg, D. D., Mauk, P. A. and Godfrey, L. D. 1997. Characteristics of beet yellows closterovirus transmission to sugar beets by Aphis fabae. Phytopathology 87:766-771. https://doi.org/10.1094/PHYTO.1997.87.7.766
  22. Liu, J., Li, L., Zhao, H., Zhou, Y., Wang, H., Li, Z. and Zhou, C. 2019. Titer variation of citrus tristeza virus in aphids at different acquisition access periods and its association with transmission efficiency. Plant Dis. 103:874-879. https://doi.org/10.1094/pdis-05-18-0811-re
  23. Liu, J., Wang, H., Wang, H., Zhou, Y., Li, Z. and Zhou, C. 2021. Molecular characteristic and expression level of minor coat protein of citrus tristeza virus isolates with different transmissibility by Toxoptera citricida. Acta Hortic. Sin. 48:1023-1030 (in Chinese with English abstract).
  24. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  25. Lu, Y., Yuan, M., Gao, X., Kang, T., Zhan, S., Wan, H. and Li, J. 2013. Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). PLoS ONE 8:e68059. https://doi.org/10.1371/journal.pone.0068059
  26. Maroniche, G. A., Sagadin, M., Mongelli, V. C., Truol, G. A. and del Vas, M. 2011. Reference gene selection for gene expression studies using RT-qPCR in virus-infected planthoppers. Virol. J. 8:308. https://doi.org/10.1186/1743-422X-8-308
  27. Mason, G., Caciagli, P., Accotto, G. P. and Noris, E. 2008. Realtime PCR for the quantitation of tomato yellow leaf curl Sardinia virus in tomato plants and in Bemisia tabaci. J. Virol. Methods 147:282-289. https://doi.org/10.1016/j.jviromet.2007.09.015
  28. Mehta, P., Brlansky, R. H., Gowda, S. and Yokomi, R. K. 1997. Reverse-transcription polymerase chain reaction detection of citrus tristeza virus in aphids. Plant Dis. 81:1066-1069. https://doi.org/10.1094/pdis.1997.81.9.1066
  29. Moreno, A., Fereres, A. and Cambra, M. 2009. Quantitative estimation of plum pox virus targets acquired and transmitted by a single Myzus persicae. Arch. Virol. 154:1391-1399. https://doi.org/10.1007/s00705-009-0450-5
  30. Moreno, P., Ambros, S., Albiach-Marti, M. R., Guerri, J. and Pena, L. 2008. Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol. Plant Pathol. 9:251-268. https://doi.org/10.1111/j.1364-3703.2007.00455.x
  31. Moury, B., Fabre, F. and Senoussi, R. 2007. Estimation of the number of virus particles transmitted by an insect vector. Proc. Natl. Acad. Sci. U. S. A. 104:17891-17896. https://doi.org/10.1073/pnas.0702739104
  32. Ng, J. C. K. and Falk, B. W. 2006. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Ann. Rev. Phytopathol. 44:183-212. https://doi.org/10.1146/annurev.phyto.44.070505.143325
  33. Olmos, A., Cambra, M., Esteban, O., Gorris, M. T. and Terrada, E. 1999. New device and method for capture, reverse transcription and nested PCR in a single closed tube. Nucleic Acids Res. 27:1564-1565. https://doi.org/10.1093/nar/27.6.1564
  34. Pfaffl, M. W., Tichopad, A., Prgomet, C. and Neuvians, T. P. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26:509-515. https://doi.org/10.1023/B:BILE.0000019559.84305.47
  35. Raccah, B., Loebenstein, G. and Bar-Joseph, M. 1976. Transmission of citrus tristeza virus by the melon aphid. Phytopathology 66:1102-1104. https://doi.org/10.1094/Phyto-66-1102
  36. Raccah, B., Loebenstein, G. and Singer, S. 1980. Aphid-transmissibility variants of citrus tristeza virus in infected citrus trees. Phytopathology 70:89-93. https://doi.org/10.1094/Phyto-70-89
  37. Rocha-Pena, M. A., Lee, R. F., Lastra, R., Niblett, C. L., OchoaCorona, F. M., Garnsey, S. M. and Yokomi, R. K. 1995. Citrus tristeza virus and its aphid vector Toxoptera citricida: threats to citrus production in the carribean and Central and North America. Plant Dis. 79:437-445. https://doi.org/10.1094/PD-79-0437
  38. Roistacher, C. N. and Bar-Jospeh, M. 1987. Aphid transmission of citrus tristeza virus: a review. Phytophylactica 19:163-167.
  39. Saponari, M., Manjunath, K. and Yokomi, R. K. 2008. Quantitative detection of citrus tristeza virus in citrus and aphids by real-time reverse transcription-PCR (TaqMan). J. Virol. Methods 147:43-53. https://doi.org/10.1016/j.jviromet.2007.07.026
  40. Shang, F., Wei, D.-D., Jiang, X.-Z., Wei, D., Shen, G.-M., Feng, Y.-C., Li, T. and Wang, J.-J. 2015. Reference gene validation for quantitative PCR under various biotic and abiotic stress conditions in Toxoptera citricida (Hemiptera, Aphidiae). J. Econ. Entomol. 108:2040-2047. https://doi.org/10.1093/jee/tov184
  41. Sharma, S. R. 1989. Factors affecting vector transmission of citrus tristeza virus in South Africa. Zentralbl. Mikrobiol. 144:283-294. https://doi.org/10.1016/S0232-4393(89)80092-7
  42. Stewart, L. R., Medina, V., Tian, T., Turina, M., Falk, B. W. and Ng, J. C. 2010. A mutation in the Lettuce infectious yellows virus minor coat protein disrupts whitefly transmission but not in planta systemic movement. J. Virol. 84:12165-12173. https://doi.org/10.1128/JVI.01192-10
  43. Uzest, M., Gargani, D., Drucker, M., Hebrard, E., Garzo, E., Candresse, T., Fereres, A. and Blanc, S. 2007. A protein key to plant virus transmission at the tip of the insect vector stylet. Proc. Natl. Acad. Sci. U. S. A. 104:17959-17964. https://doi.org/10.1073/pnas.0706608104
  44. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:research0034.1.
  45. Wu, K., Liu, W., Mar, T., Liu, Y., Wu, Y. and Wang, X. 2014. Sequencing and validation of reference genes to analyze endogenous gene expression and quantify yellow dwarf viruses using RT-qPCR in viruliferous Rhopalosiphum padi. PLoS ONE 9:e97038. https://doi.org/10.1371/journal.pone.0097038
  46. Xie, L.-H., Quan, X., Zhang, J., Yang, Y.-Y., Sun, R.-H., Xia, M.-C., Xue, B.-G., Wu, C., Han, X.-Y., Xue, Y.-N. and Yang, L.-R. 2019. Selection of reference genes for real-time quantitative PCR normalization in the process of Gaeumannomyces graminis var. tritici infecting wheat. Plant Pathol. J. 35:11-18. https://doi.org/10.5423/PPJ.OA.03.2018.0038
  47. Zhang, B.-Z., Liu, J.-J., Yuan, G.-H., Chen, X.-L. and Gao, X.-W. 2018. Selection and evaluation of potential reference genes for gene expression analysis in greenbug (Schizaphis graminum Rondani). J. Integr. Agric. 17:2054-2065. https://doi.org/10.1016/s2095-3119(18)61903-3
  48. Zhou, Y., Zhou, C. Y., Wang, X. F., Liu, Y. Q., Liu, K. H., Zou, Q., Xiang, Y. and Li, Z. A. 2011. Influence of the quantity and variability of citrus tristeza virus on transmissibility by single Toxoptera citricida. J. Plant Pathol. 93:97-103.