Acknowledgement
The research described in this paper was partially supported by the University of Cyprus (Roys Poyiadjis Academic Excellence Graduate Students Scholarship 2018-19).
References
- Acharyya, S.K. and Mandal, M. (2009), "Performance of EAs for four-bar linkage synthesis", Mech. Mach. Theory, 44, 1784-1794. https://doi.org/10.1016/j.mechmachtheory.2009.03.003.
- Adam, B. and Smith, I.F.C. (2008), "Active tensegrity: A control framework for an adaptive civilengineering structure", Comp. Struct., 86(23-24), 2215-2223. https://doi.org/10.1016/j.compstruc.2008.05.006.
- Akgun, Y., Gantes, C.J., Kalochairetis, K. and Kiper, G. (2010), "A novel concept of convertible roofs with high transformability consisting of planar scissor-hinge structures", Eng. Struct., 32, 2873-2883. https://doi.org/10.1016/j.engstruct.2010.05.006.
- Akgun, Y., Gantes, C.J., Sobek, W., Korkmaz, K. and Kalochairetis, K. (2011), "A novel adaptive spatial scissor-hinge structural mechanism for convertible roofs", Eng. Struct., 33(4), 1365-1376. https://doi.org/10.1016/j.engstruct.2011.01.014.
- Alegria Mira, L., Filomeno Coelho, R., Thrall, A.P. and De Temmerman, N. (2015), "Parametric evaluation of deployable scissor arches", Eng. Struct., 99, 479-491. https://doi.org/10.1016/j.engstruct.2015.05.013
- Bel Hadj Ali N., Rhode-Barbarigos L. and Smith I.F.C. (2011), "Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm", Int. J. Solids Struct., 48(5), 637-647. https://doi.org/10.1016/j.ijsolstr.2010.10.029.
- Chen, Y., Fan, L., Bai, Y., Feng, J. and Sareh, P. (2020), "Assigning mountain-valley fold lines of flatfoldable origami patterns based on graph theory and mixed-integer linear programming", Comput. Struct., 239, 106328. https://doi.org/10.1016/j.compstruc.2020.106328.
- Chen, Y., Fan, L. and Feng, J. (2017), "Kinematic of symmetric deployable scissor-hinge structures with integral mechanism mode", Comput. Struct., 191, 140-152. https://doi.org/10.1016/j.compstruc.2017.06.006.
- Chen, Y., Feng, J. and Sun, Q. (2018), "Lower-order symmetric mechanism modes and bifurcation behavior of deployable bar structures with cyclic symmetry", Int. J. Solids Struct., 139-140, 1-14. https://doi.org/10.1016/j.ijsolstr.2017.05.008.
- Chen, Y., Peng, R. and You, Z. (2015), "Origami of thick panels", Science, 349(6246), 396-400. https://doi.org/10.1126/science.aab2870.
- Chen, Y., Yan, J., Feng, J. and Sareh, P. (2021), "PSO-based metaheuristic design generation of non-trivial flat-foldable origami tessellations with degree-4 vertices", J. Mech. Des., 143(1), 011703. https://doi.org/10.1115/1.4047437.
- Chen, Y. and You, Z. (2008), "On mobile assemblies of Bennett linkages", Proceedings of the Royal Society of Automotive Engineers, 464(2093), 1275-1293. https://doi.org/10.1098/rspa.2007.0188.
- Christoforou, E.G., Muller, A., Phocas, M.C., Matheou, M. and Arnos, S. (2015), "Design and control concept for reconfigurable architecture", J. Mech. Des., 137, 042302. https://doi.org/10.1115/1.4029617.
- Christoforou, E.G., Phocas, M.C., Matheou, M. and Muller, A. (2019), "Experimental implementation of the 'effective 4-bar method' on a reconfigurable articulated structure", Struct., 20, 157-165. https://doi.org/10.1016/j.istruc.2019.03.009.
- Djouadi, A., Motro, R., Pons, J.C. and Crosnier, B. (1998), "Active control of tensegrity systems", Aerospace Eng., 11, 37-44. https://doi.org/10.1061/(ASCE)0893-1321(1998)11:2(37).
- Doroftei, I., Oprisan, C. and Popescu, A. (2014), "Deployable structures for architectural applications - A short review", Appl. Mech. Mat., 658, 233-240. https://doi.org/10.4028/www.scientific.net/AMM.658.233.
- Engel, H. (2009), Structure Systems, Hatje Cantz, Stuttgart, Germany.
- Escrig, F. (1985), "Expandable space structures", Int. J. Space Struct., 2(1), 79-91. https://doi.org/10.1177%2F026635118500100203. https://doi.org/10.1177%2F026635118500100203
- Fontes, J.V. and da Silva, M.M. (2016), "On the dynamic performance of parallel kinematic manipulators with actuation and kinematic redundancies", Mech. Mach. Theory, 103, 148-166. https://doi.org/10.1016/j.mechmachtheory.2016.05.004.
- Gan, W.W. and Pellegrino, S. (2003), "Closed-loop deployable structures", Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Norfolk, Virginia, U.S.A., April. https://doi.org/10.2514/6.2003-1450.
- Gantes, C.J. (2001), Deployable Structures: Analysis and Design, WIT Press, Southampton, U.K.
- Georgiou, N. and Phocas, M.C. (2020), "Kinematics analysis of deployable and reconfigurable bar-linkage structures", Proceedings of the 2020 Structures Congress, Structures 20, 2020 International Conference on Advances in Computational Design, Seoul, Korea, August.
- Gogu, G. (2005), "Mobility of mechanisms: a critical review", Mech. Mach. Theory, 40, 1068-1097. https://doi.org/10.1016/j.mechmachtheory.2004.12.014.
- Hanaor, A. (1998), Tensegrity. Theory and application, Beyond the Cube, John Wiley & Sons, New York, U.S.A.
- Hanaor, A. and Levy, R. (2001), "Evaluation of deployable structures for space enclosures", Int. J. Space Struct., 16(4), 211-229. https://doi.org/10.1260%2F026635101760832172. https://doi.org/10.1260%2F026635101760832172
- Hoberman, C. (1993), "Unfolding architecture: An object that is identically a structure and a mechanism", Arch. Des., 63, 53-59.
- Jensen, F.V. (2005), "Concepts for retractable roof structures", Ph.D. Dissertation, University of Cambridge, Cambridge, U.K. https://doi.org/10.17863/CAM.14143.
- Krishnan, S. and Liao, Y. (2020), "Geometric design of deployable spatial structures made of three-dimensional angulated members", J. Archit. Eng., 26(3), 04020029. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000416.
- Li, S., Fang, H., Sadeghi, S., Bhovad, P. and Wang, K.W. (2019), "Architected origami materials: How folding creates sophisticated mechanical properties" Adv. Mater., 31(5), 1805282. https://doi.org/10.1002/adma.201805282.
- Lin, F., Chen, C., Chen, J. and Chen, M. (2019), "Modelling and analysis for a cylindrical net-shell deployable mechanism", Adv. Struct. Eng., 22(15), 3149-3160. https://doi.org/10.1177%2F1369433219859400. https://doi.org/10.1177%2F1369433219859400
- Maden, F., Korkmaz, K. and Akgun, Y. (2011), "A review of planar scissor structural mechanisms: Geometric principles and design methods", Arch. Sci. Rev., 54, 246-257. https://doi.org/10.1080/00038628.2011.590054.
- Matheou, M., Phocas, M.C., Christoforou, E.G. and Muller, A. (2018), "On the kinetics of reconfigurable hybrid structures", J. Build. Eng., 17, 32-42. https://doi.org/10.1016/j.jobe.2018.01.013.
- Melancon, D., Gorissen, B., Garcia-Mora, C.J., Hoberman, C. and Bertoldi, K. (2021), "Multistable inflatable origami structures at the metre scale", Nature, 592, 545-550. https://doi.org/10.1038/s41586-021-03407-4.
- Moored, K.W. and Bart-Smith, H. (2009), "Investigation of clustered actuation in tensegrity structures", Int. J. Solids Struct.,46(18), 3272-3281. https://doi.org/10.1016/j.ijsolstr.2009.04.026.
- Moored, K.W., Kemp, T.H., Hole, N.E. and Bart-Smith, H. (2011), "Analytical predictions, optimization and design of a tensegrity-based artificial pectoral fin", Int. J. Solids Struct., 48(22-23), 3142-3159. https://doi.org/10.1016/j.ijsolstr.2011.07.008.
- Motro, R., Bouderbala, M., Lesaux, C. and Cevaer, F. (2001), Foldable Tensegrities, Deployable Structures, Springer, Vienna, Austria. https://doi.org/10.1007/978-3-7091-2584-7_11.
- Muller, A. (2005), "Internal preload control of redundantly actuated parallel manipulators - Its application to backlash avoiding control", IEEE T. Robot., 21(4), 668-677. https://doi.org/10.1109/TRO.2004.842341.
- Muller, A. (2013), "On the terminology and geometric aspects of redundantly actuated parallel manipulators", Robotica, 31(1), 137-147. https://doi.org/10.1017/S0263574712000173.
- Norton, R. (2008), Design of Machinery, McGraw-Hill, New York, U.S.A.
- Park, F.C. and Kim, J.W. (1999), "Singularity analysis of closed kinematic chains", J. Mech. Des., 121(1), 32-38. https://doi.org/10.1115/1.2829426.
- Pellegrino, S. (2001), "Deployable structures", CIMS Int. Center Mech. Sci., 412. http://doi.org/10.1007/978-3-7091-2584-7.
- Perez-Valcarcel, J., Munoz-Vidal, M., Suarez-Riestra, F., Lopez-Cesar, I.R. and Freire-Tellado, M.J. (2021), "A new system of deployable structures with reciprocal linkages for emergency buildings", J. Build. Eng., 33, 101609. https://doi.org/10.1016/j.jobe.2020.101609.
- Phocas, M.C., Alexandrou, K. and Athini, S. (2019), "Design and analysis of an adaptive hybridstructure of linearly interconnected scissor-like and cable bending-active components", Eng. Struct., 192, 156-165. https://doi.org/10.1016/j.engstruct.2019.04.102.
- Phocas, M.C., Christoforou, E.G. and Dimitriou, P. (2020), "Kinematics and control approach for deployable and reconfigurable rigid bar linkage structures", Eng. Struct., 208, 110310. https://doi.org/10.1016/j.engstruct.2020.110310.
- Phocas, M.C., Christoforou, E.G. and Matheou, M. (2015), "Design, motion planning and control of a reconfigurable hybrid structure", Eng. Struct., 101(10), 376-385. https://doi.org/10.1016/j.engstruct.2015.07.036.
- Phocas, M.C., Kontovourkis, O. and Matheou, M. (2012), "Kinetic hybrid structure development and simulation", Int. J. Arch. Comp., 10(1), 67-86. https://doi.org/10.1260%2F1478-0771.10.1.67. https://doi.org/10.1260%2F1478-0771.10.1.67
- Phocas, M.C., Matheou, M., Muller, A. and Christoforou, E.G. (2019), "Reconfigurable modular bar structure", J. Int. Assoc. Shell Spatial Struct., 60(1), 78-89. https://doi.org/10.20898/j.iass.2019.199.028.
- Phukaokaew, W., Sleesongsom, S., Panagant, N. and Bureerat, S. (2019), "Synthesis of four-bar linkage motion generation using optimization algorithms", Adv. Comput. Des., 4(3), 197-210. https://doi.org/10.12989/acd.2019.4.3.197.
- Pugh, A. (1976), An Introduction to Tensegrity, University of California Press, Berkeley, U.S.A.
- Rhode-Barbarigos, L. (2012), "An active deployable structure", Ph.D. Dissertation, EPFL, Lausanne, Switzerland.
- Richard Liew, J.Y., Vu, K.K. and Krishnapillai, A. (2008), "Recent development of deployable tension-strut structures", Adv. Struct. Eng., 11(6), 599-614. https://doi.org/10.1260%2F136943308787543630. https://doi.org/10.1260%2F136943308787543630
- Rivas-Adrover, E. (2018), "A new hybrid type of deployable structure: Origami-scissor hinged", J. Int. Assoc. Shell Spatial Struct., 59(3), 183-190. https://doi.org/10.20898/j.iass.2018.197.010.
- Roovers, K. and De Temmerman, N. (2017), "Deployable scissor grids consisting of translational units", Int. J. Solids Struct., 121, 45-61. https://doi.org/10.1016/j.ijsolstr.2017.05.015.
- Saitoh, M. and Okada, A. (1999), "The role of string in hybrid string structure", Eng. Struct., 21, 756-769. https://doi.org/10.1016/S0141-0296(98)00029-7.
- Schenk, M., Guest, S.D. and Herder, J.L. (2007), "Zero stiffness tensegrity structures", Int. J. Solids Struct., 44(20), 6569-6583. https://doi.org/10.1016/j.ijsolstr.2007.02.041.
- Schlaich, J., Bergermann, R., Boegle, R., Cachola, A. and Flagge, S.P. (2005), Light Structures, Prestel, New York, U.S.A.
- Snelson, K. (1965), Continuous Tension, Discontinuous Compression Structures, U.S. Patent No. 3,169,611, Washington, D.C., U.S.A.
- Thrall, A.P., Adriaenssens, S., Paya-Zaforteza, I. and Zoli, T.P. (2012), "Linkage-based movable bridges: Design methodology and three novel forms", Eng. Struct., 37, 214-223. https://doi.org/10.1016/j.engstruct.2011.12.031.
- Tibert, G. (2002), "Deployable tensegrity structures for space applications", Ph.D. Dissertation, Stockholm Royal Institute of Technology, Stockholm, Switzerland.
- You, Z. and Pellegrino, S. (1997), "Foldable bar structures", Int. J. Solids Struct., 15(34), 1825-1847. https://doi.org/10.1016/S0020-7683(96)00125-4.