DOI QR코드

DOI QR Code

A class of actuated deployable and reconfigurable multilink structures

  • Phocas, Marios C. (Department of Architecture, Faculty of Engineering, University of Cyprus) ;
  • Georgiou, Niki (Department of Architecture, Faculty of Engineering, University of Cyprus) ;
  • Christoforou, Eftychios G. (Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, University of Cyprus)
  • Received : 2020.12.28
  • Accepted : 2022.01.26
  • Published : 2022.07.25

Abstract

Deployable structures have the ability to shift from a compact state to an expanded functional configuration. By extension, reconfigurability is another function that relies on embedded computation and actuators. Linkage-based mechanisms constitute promising systems in the development of deployable and reconfigurable structures with high flexibility and controllability. The present paper investigates the deployment and reconfigurability of modular linkage structures with a pin and a sliding support, the latter connected to a linear motion actuator. An appropriate control sequence consists of stepwise reconfigurations that involve the selective releasing of one intermediate joint in each closed-loop linkage, effectively reducing it to a 1-DOF "effective crank-slider" mechanism. This approach enables low self-weight and reduced energy consumption. A kinematics and finite-element analysis of different linkage systems, in all intermediate reconfiguration steps of a sequence, have been conducted for different lengths and geometrical characteristics of the members, as well as different actuation methods, i.e., direct and cable-driven actuation. The study provides insight into the impact of various structural typological and geometrical factors on the systems' behavior.

Keywords

Acknowledgement

The research described in this paper was partially supported by the University of Cyprus (Roys Poyiadjis Academic Excellence Graduate Students Scholarship 2018-19).

References

  1. Acharyya, S.K. and Mandal, M. (2009), "Performance of EAs for four-bar linkage synthesis", Mech. Mach. Theory, 44, 1784-1794. https://doi.org/10.1016/j.mechmachtheory.2009.03.003.
  2. Adam, B. and Smith, I.F.C. (2008), "Active tensegrity: A control framework for an adaptive civilengineering structure", Comp. Struct., 86(23-24), 2215-2223. https://doi.org/10.1016/j.compstruc.2008.05.006.
  3. Akgun, Y., Gantes, C.J., Kalochairetis, K. and Kiper, G. (2010), "A novel concept of convertible roofs with high transformability consisting of planar scissor-hinge structures", Eng. Struct., 32, 2873-2883. https://doi.org/10.1016/j.engstruct.2010.05.006.
  4. Akgun, Y., Gantes, C.J., Sobek, W., Korkmaz, K. and Kalochairetis, K. (2011), "A novel adaptive spatial scissor-hinge structural mechanism for convertible roofs", Eng. Struct., 33(4), 1365-1376. https://doi.org/10.1016/j.engstruct.2011.01.014.
  5. Alegria Mira, L., Filomeno Coelho, R., Thrall, A.P. and De Temmerman, N. (2015), "Parametric evaluation of deployable scissor arches", Eng. Struct., 99, 479-491. https://doi.org/10.1016/j.engstruct.2015.05.013
  6. Bel Hadj Ali N., Rhode-Barbarigos L. and Smith I.F.C. (2011), "Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm", Int. J. Solids Struct., 48(5), 637-647. https://doi.org/10.1016/j.ijsolstr.2010.10.029.
  7. Chen, Y., Fan, L., Bai, Y., Feng, J. and Sareh, P. (2020), "Assigning mountain-valley fold lines of flatfoldable origami patterns based on graph theory and mixed-integer linear programming", Comput. Struct., 239, 106328. https://doi.org/10.1016/j.compstruc.2020.106328.
  8. Chen, Y., Fan, L. and Feng, J. (2017), "Kinematic of symmetric deployable scissor-hinge structures with integral mechanism mode", Comput. Struct., 191, 140-152. https://doi.org/10.1016/j.compstruc.2017.06.006.
  9. Chen, Y., Feng, J. and Sun, Q. (2018), "Lower-order symmetric mechanism modes and bifurcation behavior of deployable bar structures with cyclic symmetry", Int. J. Solids Struct., 139-140, 1-14. https://doi.org/10.1016/j.ijsolstr.2017.05.008.
  10. Chen, Y., Peng, R. and You, Z. (2015), "Origami of thick panels", Science, 349(6246), 396-400. https://doi.org/10.1126/science.aab2870.
  11. Chen, Y., Yan, J., Feng, J. and Sareh, P. (2021), "PSO-based metaheuristic design generation of non-trivial flat-foldable origami tessellations with degree-4 vertices", J. Mech. Des., 143(1), 011703. https://doi.org/10.1115/1.4047437.
  12. Chen, Y. and You, Z. (2008), "On mobile assemblies of Bennett linkages", Proceedings of the Royal Society of Automotive Engineers, 464(2093), 1275-1293. https://doi.org/10.1098/rspa.2007.0188.
  13. Christoforou, E.G., Muller, A., Phocas, M.C., Matheou, M. and Arnos, S. (2015), "Design and control concept for reconfigurable architecture", J. Mech. Des., 137, 042302. https://doi.org/10.1115/1.4029617.
  14. Christoforou, E.G., Phocas, M.C., Matheou, M. and Muller, A. (2019), "Experimental implementation of the 'effective 4-bar method' on a reconfigurable articulated structure", Struct., 20, 157-165. https://doi.org/10.1016/j.istruc.2019.03.009.
  15. Djouadi, A., Motro, R., Pons, J.C. and Crosnier, B. (1998), "Active control of tensegrity systems", Aerospace Eng., 11, 37-44. https://doi.org/10.1061/(ASCE)0893-1321(1998)11:2(37).
  16. Doroftei, I., Oprisan, C. and Popescu, A. (2014), "Deployable structures for architectural applications - A short review", Appl. Mech. Mat., 658, 233-240. https://doi.org/10.4028/www.scientific.net/AMM.658.233.
  17. Engel, H. (2009), Structure Systems, Hatje Cantz, Stuttgart, Germany.
  18. Escrig, F. (1985), "Expandable space structures", Int. J. Space Struct., 2(1), 79-91. https://doi.org/10.1177%2F026635118500100203. https://doi.org/10.1177%2F026635118500100203
  19. Fontes, J.V. and da Silva, M.M. (2016), "On the dynamic performance of parallel kinematic manipulators with actuation and kinematic redundancies", Mech. Mach. Theory, 103, 148-166. https://doi.org/10.1016/j.mechmachtheory.2016.05.004.
  20. Gan, W.W. and Pellegrino, S. (2003), "Closed-loop deployable structures", Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Norfolk, Virginia, U.S.A., April. https://doi.org/10.2514/6.2003-1450.
  21. Gantes, C.J. (2001), Deployable Structures: Analysis and Design, WIT Press, Southampton, U.K.
  22. Georgiou, N. and Phocas, M.C. (2020), "Kinematics analysis of deployable and reconfigurable bar-linkage structures", Proceedings of the 2020 Structures Congress, Structures 20, 2020 International Conference on Advances in Computational Design, Seoul, Korea, August.
  23. Gogu, G. (2005), "Mobility of mechanisms: a critical review", Mech. Mach. Theory, 40, 1068-1097. https://doi.org/10.1016/j.mechmachtheory.2004.12.014.
  24. Hanaor, A. (1998), Tensegrity. Theory and application, Beyond the Cube, John Wiley & Sons, New York, U.S.A.
  25. Hanaor, A. and Levy, R. (2001), "Evaluation of deployable structures for space enclosures", Int. J. Space Struct., 16(4), 211-229. https://doi.org/10.1260%2F026635101760832172. https://doi.org/10.1260%2F026635101760832172
  26. Hoberman, C. (1993), "Unfolding architecture: An object that is identically a structure and a mechanism", Arch. Des., 63, 53-59.
  27. Jensen, F.V. (2005), "Concepts for retractable roof structures", Ph.D. Dissertation, University of Cambridge, Cambridge, U.K. https://doi.org/10.17863/CAM.14143.
  28. Krishnan, S. and Liao, Y. (2020), "Geometric design of deployable spatial structures made of three-dimensional angulated members", J. Archit. Eng., 26(3), 04020029. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000416.
  29. Li, S., Fang, H., Sadeghi, S., Bhovad, P. and Wang, K.W. (2019), "Architected origami materials: How folding creates sophisticated mechanical properties" Adv. Mater., 31(5), 1805282. https://doi.org/10.1002/adma.201805282.
  30. Lin, F., Chen, C., Chen, J. and Chen, M. (2019), "Modelling and analysis for a cylindrical net-shell deployable mechanism", Adv. Struct. Eng., 22(15), 3149-3160. https://doi.org/10.1177%2F1369433219859400. https://doi.org/10.1177%2F1369433219859400
  31. Maden, F., Korkmaz, K. and Akgun, Y. (2011), "A review of planar scissor structural mechanisms: Geometric principles and design methods", Arch. Sci. Rev., 54, 246-257. https://doi.org/10.1080/00038628.2011.590054.
  32. Matheou, M., Phocas, M.C., Christoforou, E.G. and Muller, A. (2018), "On the kinetics of reconfigurable hybrid structures", J. Build. Eng., 17, 32-42. https://doi.org/10.1016/j.jobe.2018.01.013.
  33. Melancon, D., Gorissen, B., Garcia-Mora, C.J., Hoberman, C. and Bertoldi, K. (2021), "Multistable inflatable origami structures at the metre scale", Nature, 592, 545-550. https://doi.org/10.1038/s41586-021-03407-4.
  34. Moored, K.W. and Bart-Smith, H. (2009), "Investigation of clustered actuation in tensegrity structures", Int. J. Solids Struct.,46(18), 3272-3281. https://doi.org/10.1016/j.ijsolstr.2009.04.026.
  35. Moored, K.W., Kemp, T.H., Hole, N.E. and Bart-Smith, H. (2011), "Analytical predictions, optimization and design of a tensegrity-based artificial pectoral fin", Int. J. Solids Struct., 48(22-23), 3142-3159. https://doi.org/10.1016/j.ijsolstr.2011.07.008.
  36. Motro, R., Bouderbala, M., Lesaux, C. and Cevaer, F. (2001), Foldable Tensegrities, Deployable Structures, Springer, Vienna, Austria. https://doi.org/10.1007/978-3-7091-2584-7_11.
  37. Muller, A. (2005), "Internal preload control of redundantly actuated parallel manipulators - Its application to backlash avoiding control", IEEE T. Robot., 21(4), 668-677. https://doi.org/10.1109/TRO.2004.842341.
  38. Muller, A. (2013), "On the terminology and geometric aspects of redundantly actuated parallel manipulators", Robotica, 31(1), 137-147. https://doi.org/10.1017/S0263574712000173.
  39. Norton, R. (2008), Design of Machinery, McGraw-Hill, New York, U.S.A.
  40. Park, F.C. and Kim, J.W. (1999), "Singularity analysis of closed kinematic chains", J. Mech. Des., 121(1), 32-38. https://doi.org/10.1115/1.2829426.
  41. Pellegrino, S. (2001), "Deployable structures", CIMS Int. Center Mech. Sci., 412. http://doi.org/10.1007/978-3-7091-2584-7.
  42. Perez-Valcarcel, J., Munoz-Vidal, M., Suarez-Riestra, F., Lopez-Cesar, I.R. and Freire-Tellado, M.J. (2021), "A new system of deployable structures with reciprocal linkages for emergency buildings", J. Build. Eng., 33, 101609. https://doi.org/10.1016/j.jobe.2020.101609.
  43. Phocas, M.C., Alexandrou, K. and Athini, S. (2019), "Design and analysis of an adaptive hybridstructure of linearly interconnected scissor-like and cable bending-active components", Eng. Struct., 192, 156-165. https://doi.org/10.1016/j.engstruct.2019.04.102.
  44. Phocas, M.C., Christoforou, E.G. and Dimitriou, P. (2020), "Kinematics and control approach for deployable and reconfigurable rigid bar linkage structures", Eng. Struct., 208, 110310. https://doi.org/10.1016/j.engstruct.2020.110310.
  45. Phocas, M.C., Christoforou, E.G. and Matheou, M. (2015), "Design, motion planning and control of a reconfigurable hybrid structure", Eng. Struct., 101(10), 376-385. https://doi.org/10.1016/j.engstruct.2015.07.036.
  46. Phocas, M.C., Kontovourkis, O. and Matheou, M. (2012), "Kinetic hybrid structure development and simulation", Int. J. Arch. Comp., 10(1), 67-86. https://doi.org/10.1260%2F1478-0771.10.1.67. https://doi.org/10.1260%2F1478-0771.10.1.67
  47. Phocas, M.C., Matheou, M., Muller, A. and Christoforou, E.G. (2019), "Reconfigurable modular bar structure", J. Int. Assoc. Shell Spatial Struct., 60(1), 78-89. https://doi.org/10.20898/j.iass.2019.199.028.
  48. Phukaokaew, W., Sleesongsom, S., Panagant, N. and Bureerat, S. (2019), "Synthesis of four-bar linkage motion generation using optimization algorithms", Adv. Comput. Des., 4(3), 197-210. https://doi.org/10.12989/acd.2019.4.3.197.
  49. Pugh, A. (1976), An Introduction to Tensegrity, University of California Press, Berkeley, U.S.A.
  50. Rhode-Barbarigos, L. (2012), "An active deployable structure", Ph.D. Dissertation, EPFL, Lausanne, Switzerland.
  51. Richard Liew, J.Y., Vu, K.K. and Krishnapillai, A. (2008), "Recent development of deployable tension-strut structures", Adv. Struct. Eng., 11(6), 599-614. https://doi.org/10.1260%2F136943308787543630. https://doi.org/10.1260%2F136943308787543630
  52. Rivas-Adrover, E. (2018), "A new hybrid type of deployable structure: Origami-scissor hinged", J. Int. Assoc. Shell Spatial Struct., 59(3), 183-190. https://doi.org/10.20898/j.iass.2018.197.010.
  53. Roovers, K. and De Temmerman, N. (2017), "Deployable scissor grids consisting of translational units", Int. J. Solids Struct., 121, 45-61. https://doi.org/10.1016/j.ijsolstr.2017.05.015.
  54. Saitoh, M. and Okada, A. (1999), "The role of string in hybrid string structure", Eng. Struct., 21, 756-769. https://doi.org/10.1016/S0141-0296(98)00029-7.
  55. Schenk, M., Guest, S.D. and Herder, J.L. (2007), "Zero stiffness tensegrity structures", Int. J. Solids Struct., 44(20), 6569-6583. https://doi.org/10.1016/j.ijsolstr.2007.02.041.
  56. Schlaich, J., Bergermann, R., Boegle, R., Cachola, A. and Flagge, S.P. (2005), Light Structures, Prestel, New York, U.S.A.
  57. Snelson, K. (1965), Continuous Tension, Discontinuous Compression Structures, U.S. Patent No. 3,169,611, Washington, D.C., U.S.A.
  58. Thrall, A.P., Adriaenssens, S., Paya-Zaforteza, I. and Zoli, T.P. (2012), "Linkage-based movable bridges: Design methodology and three novel forms", Eng. Struct., 37, 214-223. https://doi.org/10.1016/j.engstruct.2011.12.031.
  59. Tibert, G. (2002), "Deployable tensegrity structures for space applications", Ph.D. Dissertation, Stockholm Royal Institute of Technology, Stockholm, Switzerland.
  60. You, Z. and Pellegrino, S. (1997), "Foldable bar structures", Int. J. Solids Struct., 15(34), 1825-1847. https://doi.org/10.1016/S0020-7683(96)00125-4.