DOI QR코드

DOI QR Code

Valuable resource recovery based on the water treatment technologies: a review

수처리 기반 유용 자원 회수 기술: 리뷰

  • Seongpil Jeong (Center for Water Cycle Research, Korea Institute of Science and Technology) ;
  • Kyungjin Cho (Center for Water Cycle Research, Korea Institute of Science and Technology) ;
  • Seungbeum Suh (Center for Health Care Robot, AI Robot Institute, Korea Institute of Science and Technology) ;
  • Sukho Park (Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Hongsik Yoon (Department of Sustainable Environment Research, Korea Institute of Machinery and Materials) ;
  • Taijin Min (Department of Sustainable Environment Research, Korea Institute of Machinery and Materials) ;
  • Joonwoo Park (ER Co., LTD.)
  • 정성필 (한국과학기술연구원 물자원순환연구단) ;
  • 조경진 (한국과학기술연구원 물자원순환연구단) ;
  • 서승범 (한국과학기술연구원 AI로봇연구소 헬스케어로봇연구단) ;
  • 박석호 (대구경북과학기술원 로봇및기계전자공학과) ;
  • 윤홍식 (한국기계연구원 지속가능환경연구실) ;
  • 민태진 (한국기계연구원 지속가능환경연구실) ;
  • 박준우 ((주)이알)
  • Received : 2022.10.17
  • Accepted : 2022.10.31
  • Published : 2022.12.15

Abstract

Due to the rapid growth of electrical vehicle and portable electronics markets, huge amount of the rare earth elements (REEs) and lithium have been required for the manufacturers globally. Moreover, after life time of the battery pass, the waste batteries containing valuable metal resources should be recycled due to competitions between the countries who manufacturing the batteries. Therefore, the REEs and lithium recoveries from the e-waste and wastewaters become issue recently. However, the commercialized technology for the valuable metal recovery is limited. In this study, the uses of the REEs and other valuable metal resources such as lithium, uranium, and gold and there recoverying methods according to the different water conditions were investigated and summarized. Moreover, the possible expectations and suggestions for the future application of the valuable resource recovery were conducted as a review.

Keywords

Acknowledgement

본 연구는 국가과학기술연구원 융합클러스터 사업(CCL21051-100)과 한국과학기술연구원(2E31932)의 지원으로 수행되었습니다.

References

  1. ACS meeting news. (2012). https://cen.acs.org/articles/90/i36/Extracting-Uranium-Seawater.html(October 27, 2022).
  2. Altay, M.B., Kalipcioglu, C. and Kurt, Z. (2022). Comparative life cycle assessment of uranium recovery from brine, Resour. Conserv. Recycl., 181, 106237.
  3. Cairncross, K.H. and Tadie, M. (2022). Life cycle assessment as a design consideration for process development for value recovery from gold mine tailings, Miner. Eng., 183, 107588.
  4. Crocket, K.C., Hill, E., Abell, R.E., Johnson, C., Gary, S.F., Brand, T. and Hathorne, E.C. (2018). Rare earth element distribution in the NE Atlantic: Evidence for benthic sources, longevity of the seawater signal, and Biogeochem. Cycl., Front. Mar. Sci., 5, 147.
  5. Gray, T. (2009). The elements, Black dog & Leventhal Publishers, Inc., New York, USA
  6. Hassas, B.V., Shekarian, Y., Rezaee, M. and Pisupati, S.V. (2022). Selective recovery of high-grade rare earth, Al, and Co-Mn from acid mine drainage treatment sludge material, Miner. Eng., 187, 10781.
  7. Jang, E., Jeong, S. and Chung, E. (2016). Application of three different water treatment technologies to shale gas produced water, Geosystem Eng., 19, 1-7. https://doi.org/10.1080/12269328.2015.1075910
  8. Jeong, S., Kim, H.W., Cho, K., Yang, D., Kim S.R. and Park, S.H. (2022). Installation of the brackish water reverse osmosis system coupled with solar power for drinking water production in Ben Tre, Vietnam considering water usage and cost, J. Appropr. Technol., 8(2), 75-84. https://doi.org/10.37675/jat.2022.00178
  9. Jeong, S. and Park, J. (2020). Evaluating urban water management using a water metabolism framework: a comparative analysis of three regions in Korea, Resour. Conserv. Recycl., 155, 104597.
  10. Jung, Y., Do, T., Choi, U.S., Jung, K.W. and Choi, J.W. (2022). Cage-like amine-rich polymeric capsule wi,th internal 3D center-radial channels for efficient and selective gold recovery, Chem. Eng. J., 438, 135618.
  11. Khalil, A., Mohammed, S., Hashaikeh, R. and Hilal, N. (2022). Lithium recovery from brine: Recent developments and challenges, Desalination, 528, 115611.
  12. Kim, H.W., Yun, T., Kang, P.K., Hong, S., Jeong, S. and Lee, S. (2019). Evaluation of a real-time visualization system for scaling detection during DCMD, and its correlation with wetting, Desalination, 454, 59-70. https://doi.org/10.1016/j.desal.2018.12.014
  13. Kim, H.W., Yun, T., Kang, P.K., Hong, S., Lee, S. and Jeong, S. (2020). Retardation of wetting for membrane distillation by adjusting major components of seawater, Water Res., 175, 115677.
  14. Kim, J.Y., Kim, K.Y., Kim, S.M. and Choi, Y.E. (2022). Use of rare earth element (REE)-contaminated acidic water as Euglena gracilis growth stimulator: A strategy for bioremediation and simultaneous increase in biodiesel productivity, Chem. Eng. J., 445, 136814.
  15. Kumari, A., Raj, R., Randhawa, N.S. and Sahu, S.K. (2021). Energy efficient process for recovery of rare earths from spent NdFeB magnet by chlorination roasting and water leaching, Hydrometallurgy, 201, 105581.
  16. Lee, G., Kim, H.W., Boo, C., Beak, Y., Kwak, R., Kim, C. and Jeong, S. (2021). Bibliometric analysis of twenty-year research trend in desalination technologies during 2000-2020, J. Korean Soc. Water Wastewater, 35, 39-52. https://doi.org/10.11001/jksww.2021.35.1.039
  17. Lee, J. and Chung, E. (2022). Lithium recovery from a simulated geothermal fluid by a combined selective precipitation and solvent extraction method, Geothermics, 102, 102388.
  18. Lerat-Hardy, A., Coynel, A., Dutruch, L., Pereto, C., Bossy, C., Gil-Diaz, T., Capdeville, M.J., Blanc, G. and Schafer, J. (2019). Rare Earth Element fluxes over 15 years into a major European Estuary (Garonne-Gironde, SW France): Hospital effluents as a source of increasing gadolinium anomalies, Sci. Total Environ., 656, 409-420. https://doi.org/10.1016/j.scitotenv.2018.11.343
  19. Li, X., Mo, Y., Qing, W., Senlin Shao, S., Tang, C.Y. and Li, J. (2019). Membrane-based technologies for lithium recovery from water lithium resources: A review, J. Membr. Sci., 591, 117317.
  20. Ma, J.H. and Jeong, S. (2021). Recent (2008-2019) trend and expectations in future of the water reuse capacity based on the statistics of sewerage in Republic of Korea, J. Korean Soc. Water Wastewater, 35, 477-487. https://doi.org/10.11001/jksww.2021.35.6.477
  21. Martin, G., Patzold, C. and Bertau, M. (2017). Integrated process for lithium recovery from zinnwaldite, Int. J. Miner. Process., 160 8-15. https://doi.org/10.1016/j.minpro.2017.01.005
  22. Nguyen, H.T., Cho, K., Jang, A. and Jeong, S. (2021). Cost analysis and scheduling of the desalination vessel using reverse osmosis technology, Membr. Water Treat., 12(4), 177-185.
  23. Nguyen, H.T., Adil, S., Cho, K., Jeong, S. and Kim, E.J. (2022). Improvement of carbamazepine removal through biodegradation coupled with peroxymonosulfate-based Fenton oxidation, J. Environ. Chem. Eng., 10(4), 108150.
  24. Sciencedirect (2022). https://www.sciencedirect.com/topics/materials-science/(October 27, 2022)
  25. Shi, S., Wu, R., Meng, S., Xiao, G., Ma, C., Yang, G. and Wang, N. (2022). High-strength and anti-biofouling nanofiber membranes for enhanced uranium recovery from seawater and wastewater, J. Hazard. Mater., 436, 128983.
  26. Shiklomanov, I. (1993). World Fresh Water Resources in Water in Crisis: A Guide to the World's Fresh Water Resources.
  27. Sun, X., Hao, H. Zhao, F. and Liu, Z. (2017). Tracing global lithium flow: A trade-linked material flow analys, Resour. Conserv. Recycl., 124, 50-61. https://doi.org/10.1016/j.resconrec.2017.04.012
  28. Takano, M., Asano, S. and Goto, M. (2022). Recovery of nickel, cobalt and rare-earth elements from spent nickel-metal-hydride battery: Laboratory tests and pilot trials, Hydrometallurgy, 209, 105826.
  29. Temizel, E.H., Gultekin, F. and Ersoy, A.F. (2020). Major, trace, and rare earth element geochemistry of the Ayder and Ikizdere (Rize, NE Turkey) geothermal waters: Constraints for water-rock interaction, Geothermics, 86, 101810.
  30. USGS (2020). Mineral commodity summaries, Rare earths (October 27, 2022).
  31. Wang, S., Xiong, Z., Wang, L., Yang, X., Yan, X., Li, Y., Zhang, C. and Liang, T. (2022a). Potential hot spots contaminated with exogenous, rare earth elements originating from e-waste dismantling and recycling, Environ. Pollut., 309, 119717.
  32. Wang, H., Gao, C., Li, X., Liu, C., Yu, T., Li, Y., Liu, L. and Wang, H. (2022b). Electroreduction recovery of gold, platinum and palladium and electrooxidation removal of cyanide using a bioelectrochemical system, Bioresour. Technol. Reports, 18, 101007.
  33. Wu, Y., Song, M., Zhang, Q. and Wang, W. (2021). Review of rare-earths recovery from polishing powder waste, Resour. Conserv. Recycl., 171, 105660.
  34. Yang, H., Koo, J., Hwang, T. and Jeong, S. (2020). Cost analysis of water supply and development of desalination vessel as a drought response, J. Korean Soc. Water Wastewater, 34(1), 53-60. https://doi.org/10.11001/jksww.2020.34.1.053