Acknowledgement
This study is sponsored by the National Natural Science Foundation of China (NSFC) under Grants No. 51608122, China Postdoctoral Science Foundation under Grants No. 2018M632561, the Natural Science Foundation of the Fujian Province under Grants No. 2020J01581 and the Special fund for science and technology innovation of Fujian Agriculture and Forestry University under Grants No. CXZX2020112A.
References
- Auger, F. and Flandrin, P. (1995), "Improving the readability of time-frequency and time-scale representations by the reassignment method", IEEE Trans. Sig. Pr., 43(5), 1068-1089. https://doi.org/10.1109/78.382394
- Bagheri, A., Ozbulut, O.E. and Harris, D.K. (2018), "Structural system identification based on variational mode decomposition", J. Sound Vib., 417, 182-197. https://doi.org/10.1016/j.jsv.2017.12.014
- Cempel, C. and Tabaszewski, M. (2007), "Multidimensional condition monitoring of machines in non-stationary operation", Mech. Syst. Sig. Pr., 21(3), 1233-1241. https://doi.org/10.1016/j.ymssp.2006.04.001
- Chen, X.Y. and Cui, B.B. (2016), "Efficient modeling of fiber optic gyroscope drift using improved EEMD and extreme learning machine", Signal Process., 128, 1-7. https://doi.org/10.1016/j.sigpro.2016.03.016
- Chen, G.D. and Wang, Z.C. (2012), "A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely-spaced frequency components", Mech. Syst. Sig. Pr., 28, 258-279. https://doi.org/10.1016/j.ymssp.2011.02.002
- Chen, S.Q., Yang, Y., Dong, X.J., Xing, G.P., Peng, Z.K. and Zhang, W.M. (2019), "Warped variational mode decomposition with application to vibration signals of varying-speed rotating machineries", IEEE Trans. Instrum. Meas., 68(8), 2755-2767. https://doi.org/10.1109/TIM.2018.2869440
- Clausel, M., Oberlin, T. and Perrier, V. (2015), "The monogenic synchrosqueezed wavelet transform: A tool for the decomposition/demodulation of AM-FM images", Appl. Comput. Harmon. Anal., 39(3), 450-486. https://doi.org/10.1016/j.acha.2014.10.003
- Daubechies, I., Lu, J.F. and Wu, H.T. (2011), "Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool", Appl. Comput. Harmon. Anal., 30(2), 243-261. https://doi.org/10.1016/j.acha.2010.08.002
- Dragomiretskiy, K. and Zosso, D. (2014), "Variational mode decomposition", IEEE Trans. Sig. Pr., 62(3), 531-544. https://doi.org/10.1109/TSP.2013.2288675
- Feldman, M. (2006), "Time-varying vibration decomposition and analysis based on the Hilbert transform", J. Sound Vib., 295(3-5), 518-530. https://doi.org/10.1016/j.jsv.2005.12.058
- Feng, Z.P., Yu, X.N., Zhang, D. and Liang, M. (2020), "Generalized adaptive mode decomposition for nonstationary signal analysis of rotating machinery: Principle and applications", Mech. Syst. Sig. Pr., 136, 106530. https://doi.org/10.1016/j.ymssp.2019.106530
- Ferhatoglu, E., Cigeroglu, E. and Ozguven, H.N. (2018), "A new modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes", Mech. Syst. Sig. Pr., 107, 317-342. https://doi.org/10.1016/j.ymssp.2018.01.036
- Mohanty, Gupta, K.K. and Raju, K.S. (2014), "Bearing fault analysis using variational mode decomposition", Proceedings of the 9th International Conference on Industrial and Information Systems, Gwalior, India, December, pp. 1-6. https://doi.org/10.1109/ICIINFS.2014.7036617
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998), "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Proc. Math. Phys. Eng. Sci., 454, 903-995. https://doi.org/10.1098/rspa.1998.0193
- Isham, M.F., Leong, M.S., Lim, M.H. and Ahmad, Z.A. (2018), "Variational mode decomposition: mode determination method for rotating machinery diagnosis", J. Vib., 20(7), 2604-2621. https://doi.org/10.21595/jve.2018.19479
- Lahmiri, S. (2014), "Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains", Healthc. Technol. Lett., 1, 104-109. https://doi.org/10.1049/htl.2014.0073
- Le, T.H. and Caracoglia, L. (2015), "High-order, closely-spaced modal parameter estimation using wavelet analysis", Struct. Eng. Mech., Int. J., 56(3), 423-442. https://doi.org/10.12989/sem.2015.56.3.423
- Lee, J.H., Kim, J. and Kim, H.J. (2001), "Development of enhanced wigner-ville distribution function", Mech. Syst. Sig. Pr., 15(2), 367-398. https://doi.org/10.1006/mssp.2000.1365
- Li, C. and Liang, M. (2012), "A generalized synchrosqueezing transform for enhancing signal time-frequency representation", Signal Process., 92(9), 2264-2274. https://doi.org/10.1016/j.sigpro.2012.02.019
- Liu, J.L., Wang, Z.C., Ren, W.X. and Li, X.X. (2015), "Structural time-varying damage detection using synchrosqueezing wavelet transform", Smart Struct. Syst., Int. J., 15(1), 119-133. https://doi.org/10.12989/sss.2015.15.1.119
- Liu, J.L., Wei, X.J., Qiu, R.H., Zheng, J.Y., Zhu, Y.J. and Laory, I. (2018), "Instantaneous frequency extraction in time-varying structures using a maximum gradient method", Smart Struct. Syst., Int. J.., 22(3), 359-368. https://doi.org/10.12989/sss.2018.22.3.359
- Liu, J.L., Zheng, J.Y., Wei, X.J., Ren, W.X. and Laory, I. (2019), "A combined method for instantaneous frequency identification in low frequency structures", Eng. Struct., 194, 370-383. https://doi.org/10.1016/j.engstruct.2019.05.057
- Oberlin, T., Meignen, S. and Perrier, V. (2015), "Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations", IEEE Trans. Sig. Pr., 63(5), 1335-1344. https://doi.org/10.1109/TSP.2015.2391077
- Olhede, S. and Walden, A.T. (2005), "A generalized demodulation approach to time-frequency projections for multicomponent signals", Proc. R. Soc. A., 461(2059), 2159-2179. https://doi.org/10.1098/rspa.2005.1455
- Poon, C.W. and Chang, C.C. (2007), "Identification of nonlinear elastic structures using empirical mode decomposition and nonlinear normal modes", Smart Struct. Syst., 3(4), 423-437. https://doi.org/10.12989/sss.2007.3.4.423
- Smith, J.S. (2005), "The local mean decomposition and its application to EEG perception data", J. R. Soc. Interface, 2, 443-454. https://doi.org/10.1098/rsif.2005.0058
- Thakur, G., Brevdo, E., Fuckar, N.S. and Wu, H.T. (2013), "The Synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications", Signal Process., 93(5), 1079-1094. https://doi.org/10.1016/j.sigpro.2012.11.029
- Wang, C., Ren, W.X., Wang, Z.C. and Zhu, H.P. (2013), "Instantaneous frequency identification of time-varying structures by continuous wavelet transform", Eng. Struct., 52(9), 17-25. https://doi.org/10.1016/j.engstruct.2013.02.006
- Zhu, J., Wang, C., Hu, Z.Y., Kong, F.R. and Liu, X.C. (2015), "Adaptive variational mode decomposition based on artificial fish swarm algorithm for fault diagnosis of rolling bearings", J. Mech. Eng. Sci., 231(4), 635-654. https://doi.org/10.1177/0954406215623311